首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
Reptile learning has been studied with a variety of methods and has included numerous species. However, research on learning in lizards has generally focused on spatial memory and has been studied in only a few species. This study explored visual discrimination in two rough-necked monitors (Varanus rudicollis). Subjects were trained to discriminate between black and white stimuli. Both subjects learned an initial discrimination task as well as two reversals, with the second reversal requiring fewer sessions than the first. This reduction in trials required for reversal acquisition provides evidence for behavioral flexibility in the monitor lizard genus. (PsycINFO Database Record (c) 2011 APA, all rights reserved)  相似文献   

2.
Animals living in stable home ranges have many potential cues to locate food. Spatial and color cues are important for wild Callitrichids (marmosets and tamarins). Field studies have assigned the highest priority to distal spatial cues for determining the location of food resources with color cues serving as a secondary cue to assess relative ripeness, once a food source is located. We tested two hypotheses with captive cotton-top tamarins: (a) Tamarins will demonstrate higher rates of initial learning when rewarded for attending to spatial cues versus color cues. (b) Tamarins will show higher rates of correct responses when transferred from color cues to spatial cues than from spatial cues to color cues. The results supported both hypotheses. Tamarins rewarded based on spatial location made significantly more correct choices and fewer errors than tamarins rewarded based on color cues during initial learning. Furthermore, tamarins trained on color cues showed significantly increased correct responses and decreased errors when cues were reversed to reward spatial cues. Subsequent reversal to color cues induced a regression in performance. For tamarins spatial cues appear more salient than color cues in a foraging task. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

3.
The avian visual "Wulst" is a target of the ascending thalamofugal visual pathway. In pigeons (Columba livia), lesion damage to the Wulst has little effect on simple visual discriminations, but impairs performance on tasks such as reversal learning. We recorded the responses of single Wulst neurons as pigeons were trained on the acquisition and subsequent reversal of a visual discrimination. Of the 64 units recorded, 54 (84%) displayed a significant difference in firing rate between some component of the task and the intertrial interval that separated trials. More important, 14 units (22%) displayed a significant change in firing rate exclusively to the S+ and/or S- as learning progressed either during acquisition or reversal. The responses of these 14 neurons indicate that learning during initial acquisition was as likely to correlate with a change in firing rate as during reversal, and some neuronal responses could be characterized as representing reward properties together with visual stimulus features. As such, responses of pigeon Wulst neurons indicate a role in representing aspects of learning as much as the physical/perceptual properties of visual stimuli. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

4.
The relative role of associative processes and the use of explicit cues about object location in search behavior in dogs (Canis familiaris) was assessed by using a spatial binary discrimination reversal paradigm in which reversal conditions featured: (1) a previously rewarded location and a novel location, (2) a previously nonrewarded location and a novel location, or (3) a previously rewarded location and a previously nonrewarded location. Rule mediated learning predicts a similar performance in these different reversal conditions whereas associative learning predicts the worst performance in Condition 3. Evidence for an associative control of search emerged when no explicit cues about food location were provided (Experiment 1) but also when dogs witnessed the hiding of food in the reversal trials (Experiment 2) and when they did so in both the prereversal and the reversal trials (Experiment 3). Nevertheless, dogs performed better in the prereversal phase of Experiment 3 indicating that their search could be informed by the knowledge of the food location. Experiment 4 confirmed the results of Experiments 1 and 2, under a different arrangement of search locations. We conclude that knowledge about object location guides search behavior in dogs but it cannot override associative processes. (PsycINFO Database Record (c) 2011 APA, all rights reserved)  相似文献   

5.
Two male quokkas (Setonix brachyurus: a herbivorous macropod marsupial) were trained to discriminate pairs of stimuli in the laboratory. Quokkas indicated their choice by pulling on 1 of 2 simultaneously presented cords. The quokkas' discrimination abilities were tested on 6 tactile and 6 visual discrimination tasks. Correct responses were rewarded with food. For both quokkas, all tactile tasks were learned to a criterion of 75% correct in up to 4 20-trial sessions. No visual task maintained criterion performance in 4 sessions. One tactile discrimination was reversed 10 times. After the 1st reversal, the error rate declined sharply and fell to a level well below the initial discrimination. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

6.
Species discrimination has been described in several taxa but rarely in domestic animals. In contrast to wild species, domestic species present a great phenotypic variety. This study investigated whether 10 Prim'Holstein heifers (Bos taurus) could discriminate images of cows from images of other domestic animals. The experiment was based on simultaneous discrimination. Responses were obtained through instrumental conditioning using a food reward. In Experiment 1, the reward was associated with a cow face and, in the reversal learning task, with faces of other domestic species. The results showed that in both tasks, cows were able to reach the criterion in few sessions. Therefore, despite great phenotypic variety (a cognitive challenge) cows were able to visually discriminate their own species from other domestic species. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
Using the landmark-transformation technique, researchers have shown that pigeons (Columba livia) tend to encode a goal location relative to 1 landmark, even when multiple landmarks are in the vicinity of the goal. The current experiments examined pigeons' ability to use configural information from a set of landmarks by making the arrangement of 4 landmarks a discriminative cue to the location of buried seeds. Results showed that pigeons used information from the 3 consistently placed landmarks to search accurately when 1 landmark was displaced. Findings indicate that pigeons are able to search for a goal using information from multiple landmarks instead of just 1 and that landmark use by these birds may be more flexible than previously theorized. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

8.
In most studies on animal learning, individual animals are tested separately in a specific learning environment and with a limited number of trials per day. An alternative approach is to test animals in a familiar environment in their social group. In this study, the authors--applying a fully automated learning device--investigated voluntary, self-controlled visual shape discrimination learning of group-housed dwarf goats (Capra hircus). The majority of the tested goats showed successful shape discrimination, which indicates the adaptive value of an effective learning strategy. However, in each group, a few individual goats developed behavioral strategies different from shape discrimination to get reward. Relocation impairs memory retrieval (probably by attention shifting) only temporarily for previously learnt shapes. The results demonstrate the usefulness of a self-controlled learning paradigm to assess learning abilities of social species in their normal social settings. This may be especially relevant for captive animals to improve their welfare. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

9.
The ability of 4 olive baboons (Papio anubis) to use human gaze cues during a competitive food task was investigated. Three baboons used head orientation as a cue, and 1 individual also used eye direction alone. As the baboons did not receive prior training with gestural cuts, their performance suggests that the competitive paradigm may be more appropriate for testing nonhuman primates than the standard object-choice paradigm. However, the baboons were insensitive to whether the experimenter could actually perceive the food item, and therefore the use of visual orientation cues may not be indicative of visual perspective-taking abilities. Performance was disrupted by the introduction of a screen and objects to conceal food items and by the absence of movement in cues presented. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

10.
When disoriented in a closed rectangular tank, fish (Xenotoca eiseni) reoriented in accord with the large-scale shape of the environment, but they were also able to conjoin geometric information with nongeometric properties such as the color of a wall or the features provided by panels located at the comers of the tank. Fish encoded geometric information even when featural information sufficed to solve the spatial task. When tested after transformations that altered the original arrangement of the panels, fish were more affected by those transformations that modified the geometric relationship between the target and the shape of the environment. Finally, fish appeared unable to use nongeometric information provided by distant panels. These findings show that a reorientation mechanism based on geometry is widespread among vertebrates, though the joint use of geometric and nongeometric cues by fish suggest that the degree of information encapsulation of the mechanism varies considerably between species. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

11.
The authors tested the spatial generalization of shape and color discriminations in 2 monkeys, in which 3 visual field quadrants were affected, respectively, by lesions in area V4, TEO, or both areas combined. The fourth quadrant served as a normal control. The monkeys were trained to discriminate stimuli presented in a standard location in each quadrant, followed by tests of discrimination performance in new locations in the same quadrant. In the quadrant affected by the V4 + TEO lesion, the authors found temporary but striking deficits in spatial generalization of shape and color discriminations over small distances, suggesting a contribution of areas V4 and TEO to short-range spatial generalization of visual skills. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
Using a comparative neuropsychological approach, the authors compared performance of younger and healthy older adults ages 65 and over on tasks originally developed to measure cognition in animals. A battery of 6 tasks was used to evaluate object discrimination, egocentric spatial abilities, visual and spatial working memory, and response shifting. Older adults performed more poorly than younger adults on tasks that evaluate egocentric spatial abilities, response shifting, and to a lesser extent object recognition. The two groups did not differ for tasks that evaluate spatial working memory and object discrimination. The impairments the authors observed in tasks that evaluate response shifting and object recognition are consistent with those found in canines and primates as well as those found in Alzheimer's disease. The results are consistent with the notion that cognitive processes supported by the amygdala and the orbitofrontal cortex are among the first to decline with increasing age in both humans and animals. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

13.
Rats (Rattus norvegicus) were allowed to hide food items on an 8-arm radial maze by carrying the items from the center to boxes at the end of each arm. Retrieval tests given after rats had hidden 4 items showed that they selectively returned to the maze arms where food had been hidden (Experiments 1 and 2). When rats were allowed to hide pieces of cheese (preferred food) and pretzels (less preferred food) on different arms, they both hid and retrieved cheese before pretzels (Experiments 2-5). In Experiment 6, rats chose between arms where cheese and pretzels were hidden, with cheese degraded at one delay interval but not the other. Together, these experiments indicate memory for what and where but not when. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

14.
We report on operant conditioning and artificial neural network (ANN) simulations aimed at further elucidating mechanisms of black-capped chickadee chick-a-dee call note category perception. Specifically, we tested for differences in the speed of acquisition among different discrimination tasks and, in two selected discrimination groups, searched for evidence of peak shift. Earlier, unreported ANN data were instrumental in providing the motivation for the current set of studies with chickadees and are provided here. The ANNs revealed differences in the speed of learning among note-type discrimination groups that is related to the degree of perceptual similarity among the three note types tested (i.e., A, B, and C notes). In many respects, bird and network results were in agreement (i.e., in the observation of peak shift in the same group), but they also differed in important ways (i.e., all discrimination groups showed differences in speed of learning in simulations but not in chickadees). We suggest that the start, peak and end frequency of the chick-a portion of chick-a-dee call notes, which form a graded but overlapping continuum, may drive the peak shift observed. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
Eyeblink conditioning is a well-understood paradigm for the study of learning and memory and has been successfully employed with the use of auditory and visual conditioned stimuli (CSs). In this study, vibrotactile stimulation of the mystacial vibrissae was examined as an alternative CS in the rabbit ( Oryctolagus cuniculus). The technique is described and acquisition of eyeblink conditioning (EBC) with stimulation of a single row of vibrissae in a delay paradigm is reported. Extinction of EBC with presentation of the CS alone is demonstrated, as well as reacquisition with stimulation of a single whisker. Finally, control experiments ensure that the CS has no auditory components. Ipsilateral presentation of the CS and airpuff is a more effective combination for training than contralateral presentations. Vibrotactile stimulation of the vibrissae as a CS will enable further examination of the neural correlates of learning in a well-characterized sensory system. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号