首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
This work reports the preparation and characterization of copolymer poly-{styrene-acrylic acid} with monomeric ratio of styrene/acrylic acid of 9:1 using benzoyl peroxide as initiator and furthermore filled with nanosilver (25 ppm and 50 ppm) in water/acetone (1:40 v/v). The nanosilver emulsion was obtained from chemical reduction using NaBH4 as reducing agent and sodium citrate as the stabilizer. The preparation of nanosilver emulsion was monitored by the appearance of a Plasmon Resonant Absorption band in a UV–visible spectrophotometer and the particles sizes were observed through TEM. Microbiological studies were performed to investigate the antimicrobial activity of this new material against the microorganisms Escherichia coli (ATCC-25922) and Staphylococcus aureus (ATCC-6538), used as reference strains. The antimicrobial activity of the poly-{styrene-acrylic acid} filled with nanosilver was confirmed by the presence of an inhibition halo of the bacterial growth in seeded culture media, but was not found with the poly(styrene-acrylic acid) alone. The present work suggests that silver ions are released from the polymeric matrix to the culture media and have the ability to tune the Ag+ ions released by controlling the amount of Ag nanoparticles embedded in the composite.  相似文献   

2.
Elemental silver nanoparticles were generated in polyamide 6 (PA6) by the thermal reduction of silver ions during the melt processing of a PA6/silver acetate mixture. The silver ion release from PA6 filled with 2 wt% nanosilver obeys a zero-order rate law for at least 100 days. During this time about 17 μg silver per day, per litre immersion liquid and per cm2 sample surface are released. The PA6/Ag-nanocomposite was shown to be active against Escherichia coli whereas the pure PA6 did not show any antimicrobial efficacy. Immersion of a nanocomposite containing 2 wt% silver in water for 100 days does not reduce its antimicrobial efficacy against Escherichia coli. Thus PA6 filled with 2 wt% nanosilver is an effective antimicrobial material for long-term applications.  相似文献   

3.
Wound healing requires a series of cellular events and a cascade of co‐ordinated and systemic biochemical events. Silver nanoparticles possess many beneficial properties for wound management including antibacterial, anti‐inflammatory and pro‐healing properties. In this study, the authors investigated the wound healing properties of Cinnamomum verum extract mediated nanosilver (CENS) particles in comparison with 1% povidone iodine, citrate mediate NS and CE treatments. The topical application of CENS showed good antibacterial activity and accelerated wound healing with complete epithelialisation and normal re‐growth of hair in all three models of study: namely, excision, incision and dead space models in rats compared with all other treatments. CENS was also found to promote collagen synthesis, stabilise wound besides countering oxidative stress and stimulating cellular proliferation CENS could be a novel therapeutic agent for wound management.Inspec keywords: silver, nanoparticles, nanomedicine, wounds, antibacterial activity, biomedical materials, biochemistry, cellular biophysics, proteinsOther keywords: wound healing efficacy, chemical nanoparticles, phytogenic silver nanoparticles, cellular events, systemic biochemical events, wound management, antibacterial properties, anti‐inflammatory properties, pro‐healing properties, Cinnamomum verum extract mediated nanosilver particles, CENS, complete epithelialisation, normal hair regrowth, excision model, incision model, dead space model, rats, collagen synthesis, oxidative stress, cellular proliferation, therapeutic agent, Ag  相似文献   

4.
Surface treatments of textile fibers and fabrics significantly increase their performances for specific biomedical applications. Nowadays, silver is the most used antibacterial agent with a number of advantages. Among them, it is worth to note the high degree of biocompatibility, an excellent resistance to sterilization conditions, antibacterial properties with respect to different bacteria associated with a long-term of antibacterial efficiency. However, there are only a few antibacterial fibres available, mainly synthetic with high production cost and limited effectiveness. Cotton yarns with antimicrobial properties are most suitable for wound healing applications and other medical treatments thanks to their excellent moisture absorbance while synthetic based fibres are most suitable for industrial applications such as automotive tapestry and air filters. The silver-coated fibers were developed applying an innovative and low cost silver deposition technique for natural and synthetic fibers or yarns. The structure and morphology of the silver nanoclusters on the fibers was observed by scanning electron microscopy (SEM), atomic force microscopy analysis (AFM) and XRD analysis, and quantitatively confirmed by thermogravimetric analysis (TGA) measurements. Good silver coating stability has been confirmed performing several industrial washing. Antimicrobial tests with Escherichia coli were performed.  相似文献   

5.
Hydrogels with polyvinyl pyrrolidone (PVP) and alginate were synthesized and silver nanoparticles were incorporated in hydrogel network using gamma radiation. PVP (10?and 15?%) in combination with 0.5?and 1?% alginate was gamma irradiated at different doses of 25?and 40?kGy. Maximum gel percent was obtained with 15?% PVP in combination with 0.5?% alginate. The fluid absorption capacity for the PVP/alginate hydrogels was about 1881–2361?% at 24?h. Moisture vapour transmission rate (MVTR) of hydrogels containing nanosilver at 24?h was 278.44?g/(m2h). The absorption capacity and moisture permeability of the PVP/alginate–nanosilver composite hydrogel dressings show the ability of the hydrogels to prevent fluid accumulation in exudating wound. The hydrogels containing nanosilver demonstrated strong antimicrobial effect and complete inhibition of microbial growth was observed with 70?ppm nanosilver dressings. PVP/alginate hydrogels containing nanosilver with efficient fluid handling capacity and antimicrobial activity was found suitable for use as wound dressing.  相似文献   

6.
Chitosan films incorporated with thyme oil for potential applications of wound dressing were successfully prepared by solvent casting method. The water vapor permeability, oxygen transmission rate, and mechanical properties of the films were determined. Surface and cross-section morphologies and the film thicknesses were determined by Scanning Electron Microscopy (SEM). Fourier transform infrared (FT-IR) spectroscopy was conducted to determine functional group interactions between the chitosan and thyme oil. Thermal behaviors of the films were analyzed by Thermal Gravimetry (TGA) and Differential Scanning Calorimetry (DSC). In addition, the antimicrobial and the antioxidant activities of the films were investigated. The antimicrobial test was carried by agar diffusion method and the growth inhibition effects of the films including different amount of thyme oil were tested on the gram negative microorganisms of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and a gram positive microorganism of Staphylococcus aureus. The minimum thyme oil concentration in chitosan films showing the antimicrobial activity on all microorganisms used in the study was found as 1.2 % (v/v). In addition, this concentration showed the highest antioxidant activity due to mainly the carvacrol in thyme oil. Water vapor permeability and oxygen transmission rate of the films slightly increased, however, mechanical properties decreased with thyme oil incorporation. The results revealed that the thyme oil has a good potential to be incorporated into chitosan to make antibacterial and permeable films for wound healing applications.  相似文献   

7.
In this study, chlorhexidine (CHX)–silver (Ag) hybrid nanoparticles (NPs) coated gauze was developed, and their bactericidal effect and in vivo wound healing capacities were tested. A new method was developed to synthesise the NPs, wherein Ag nitrate mixed with sodium (Na) metaphosphate and reduced using Na borohydride. Finally, CHX digluconate was added to form the hybrid NPs. To study the antibacterial efficacy of particles, the minimal inhibition concentration and biofilm degradation capacity against Gram‐positive and Gram‐negative bacteria was studied using Escherichia coli and Staphylococcus aureus. The results indicated that the NP inhibited biofilm formation and was bactericidal as well. The gauze was doped with NPs, and its wound healing property was evaluated using mice model. Results indicated that the wound healing process was fastened by using the NPs gauze doped with NPs without the administration of antibiotics.Inspec keywords: nanomedicine, nanoparticles, wounds, silver, cellular biophysics, biomedical materials, nanofabrication, microorganisms, antibacterial activityOther keywords: NPs gauze, antimicrobial wound healing applications, hybrid NPs, chlorhexidine–silver hybrid nanoparticles, CHX, coated gauze, bactericidal effect, minimal inhibition concentration, biofilm degradation capacity, Gram‐negative bacteria, wound healing property, wound healing process, in vivo wound healing capacities, Staphylococcus aureus, Escherichia coli, antibiotics administration, Na borohydride, Ag nitrate mixing, sodium metaphosphate, CHX digluconate, NP inhibited biofilm formation, Ag  相似文献   

8.
The study explored biological synthesis of metallic silver nanoparticles (AgNPs) from the less explored non‐pathogenic coprophilous fungus, sterile mycelium, PM0651419 and evaluates the antimicrobial efficacy of biosynthesised AgNPs when impregnated in wound fabrics and in combination with six antimicrobial agents. AgNPs alone proved to be potent antibacterial agents and in combination they enhanced the antibacterial activity and spectrum of antibacterials used in the study against a microbiologically diverse battery of Gram positive, Gram negative and multidrug‐resistant bacteria. AgNPs impregnated on the wound dressings established their antibacterial activity by significantly reducing the bacterial load of pathogenic bacteria like Staphylococcus aureus and Bacillus subtilis e stablishing potential as effective antimicrobial wound dressings for treatment of polymicrobial wound infections. This study presents the first report on the potential of biosynthesis of AgNPs from the under explored class of coprophilous fungi. Their promise to be used in wound dressings and as potent antibacterials alone and in combination is evaluatedInspec keywords: silver, nanoparticles, nanofabrication, nanomedicine, biomedical materials, microorganisms, antibacterial activity, wounds, fabricsOther keywords: antibacterial activity, coprophilous fungus PM0651419, biological synthesis, metallic silver nanoparticles, nonpathogenic coprophilous fungus, sterile mycelium, antimicrobial efficacy, biosynthesised AgNPs, wound fabrics, microbiologically diverse battery, Gram positive bacteria, Gram negative bacteria, multidrug‐resistant bacteria, wound dressings, bacterial load, pathogenic bacteria, Staphylococcus aureus, Bacillus subtilis, polymicrobial wound infections, Ag  相似文献   

9.
In this study nano-composite scaffolds to be used as bone grafts have been endowed with antibacterial properties owing to the presence of silver nanoparticles. The alginate/hydroxyapatite composite scaffolds were prepared by internal gelation followed by a freeze-drying procedure to obtain a porous structure. The nanoparticles were prepared in presence of a lactose modified-chitosan and this colloidal solution was adsorbed on the scaffolds by exploiting electrostatic interactions. The adsorption and release of the silver from the composite scaffold was measured by ICP-AES and spectrofluorimetry measurements. Micro-computed tomography analysis of the scaffolds showed a homogeneous porous structure with average pore sizes of 341.5 μm and porosity of 80 %. In vitro biological tests (MTS and killing kinetics assays) demonstrated that silver does not affect the ability of the scaffolds to promote osteoblasts proliferation and that at the same time it exerts a strong bactericidal effect against both Gram+ and Gram? bacterial strains. Overall, the combined results indicate that these biocompatible antimicrobial scaffolds possess ideal characteristics for tissue engineering applications.  相似文献   

10.
Nanogold and nanosilver composites with lignin-containing cellulose fibres   总被引:1,自引:0,他引:1  
The formation of nanogold and nanosilver composites with cellulose paper fibres and the associated lignin component together with their antimicrobial properties are presented. This follows on from the proprietary technology of Johnston et al. [1] wherein they used nanogold and nanosilver entities in wool fibres to provide novel colourfast colourants in textiles with additional effective antimicrobial and catalytic properties. The nanogold and nanosilver are formed and bound directly onto the unbleached lignin-containing paper fibres without the use of an external linker molecule. For this, the lignin was found to play an essential role and hence the methodology presented is applicable only to cellulose in the form of unbleached kraft fibres and mechanical pulp. The phenol and possibly the aromatic methoxy groups of the lignin are considered to reduce Au3+ to Au0 and Ag+ to Ag0, respectively, and bind the nanogold and nanosilver to the fibre surface. SEM images and UV–Visible spectra confirm the formation of nanogold and nanosilver on the fibre surface. Changes in the IR spectra are consistent with the above role of the phenol and methoxy groups. The resulting nanogold—unbleached kraft fibres are purple and the nanosilver—unbleached kraft fibres are yellow due to the surface plasmon resonance effects of nanogold and nanosilver respectively. The nanogold—unbleached kraft fibres and particularly the nanosilver—unbleached kraft fibres exhibit very effective antimicrobial properties at low levels of gold and at very low levels of silver. In this way we have been able to produce novel nanogold paper and nanosilver paper fibres and products which collectively exhibit the properties of the nanomaterials and the fibre substrates in a synergistic way. This provides the opportunity for developing new functional paper products for antimicrobial packaging, medical dressings, and clothing.  相似文献   

11.
Bacterial cellulose-based antifouling materials have been produced by incorporation of silver nanoparticles for broad-spectrum antimicrobial activity. Three variations of silver nitrate (AgNO3) to reducing agent concentrations have been tried to vary the silver nanoparticle dimension. The formation of silver nanoparticles was also evidenced by the X-ray diffraction, and the crystallite size was found to decrease with increase in NaBH4 concentration. AgBC composites having < 2% (W/W) of silver exhibited 99.9% antimicrobial activity which was sustained up to 72 h against spoiled food derived mixed microbial culture. On the other hand, only 90% activity was observed with colloidal AgNPs due to aggregate formation. Composites displayed superior antimicrobial activity than colloid with equivalent amount of silver. Food stuff was protected from microbial spoilage for 30 days when stored in AgBC nanocomposites, whereas spoilage was noticed within 15 days for food stuff stored in regular polythene bag. Therefore, the AgBC composite having < 2% silver can be used as a lining of regular food packaging material to extend shelf life till 30 days. Toxicity due to high amount of silver can be prevented with these composites and can be safely used in healthcare applications such as food packaging, wound dressing, hospital bed lining and surgical apparels.  相似文献   

12.
Chronic wounds and related infections cause physical and psychological distress in patients, increased mortality, disability and high health care costs. The healing process can be delayed by several factors and in particular by the risk of infections, which can be further complicated by the increasing number of antibiotic-resistant microorganisms. New approaches in wounds management have been encouraged, aiming at preventing infections and improving wound healing. In this scenario, silver has emerged as an ideal antimicrobial agent due to its recognized efficacy against bacteria, viruses and fungi. Moreover, silk and in particular silk sericin from Bombyx mori has demonstrated excellent biological properties and can be considered a good candidate for skin tissue engineering. In this study absorbable PLGA sutures were functionalized with silk sericin and, then, they were treated with silver through an in situ photochemical deposition technology in order to develop an antibacterial and regenerative biomedical device. Morphological analysis was performed by Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy (SEM-EDX) in order to evaluate the presence and distribution of silver deposited on the sutures. The stability and durability of the sericin/silver coatings were tested and the results were related to both antibacterial properties and sample degradation. The biological analyses also aimed at studying the biocompatibility and wound healing properties of the device, evaluating the synergistic effect between sericin and silver.  相似文献   

13.
In this study, silver-loaded coral hydroxyapatites (SLCHAs) were used as scaffolds for bone tissue engineering. The SLCHAs were prepared by surface adsorption process and ion-exchange reaction between Ca2+ of coral hydroxyapatite (CHA) and Ag+ of silver nitrate with different concentrations at room temperature. The properties of the composite SLCHAs were investigated by inductively coupled plasma-atomic emission spectrometry (ICP-AES), scanning electron microscropy (SEM) equipped with backscattered electron detector (BSE), and energy-dispersive X-ray spectrometer (EDS). The SEM images showed that the morphology of the SLCHAs depended on the content of Ag+, and the silver ions were uniformly distributed on the surface of SLCHAs. The ICP-AES results demonstrated that the silver content of the SLCHAs decreased along with the decrease of the concentration of silver nitrate. The SLCHAs were found effective against Escherichia coli and Staphylococcus aureus by antibacterial test. Mouse embryonic pre-osteoblast cells (MC3T3-E1) were used to test the cytocompatibility of SLCHAs, CHA, and pure coral. Cell morphology and cell proliferation were studied with SEM, laser scanning confocal microscope (LSCM), and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay after 1, 3, and 5 days of culture. The results indicated the cell morphology and proliferation on the scaffolds of Ag+ (13.6 μg/ml)/CHA and Ag+ (1.7 μg/ml)/CHA were better than that on Ag+ (170 μg/ml)/CHA. In addition, adhesion of MC3T3-E1 on the scaffolds showed that the confluent cells showed fusiform shape and arranged tightly on the scaffolds. All the results showed that the antibacterial SLCHAs would have potential clinical application as the scaffolds for bone tissue engineering.  相似文献   

14.
Abstract

We present a study of a range of cross-linked chitosan composites with potential antimicrobial applications. They were formed by cross-linking chitosan and siloxane networks and by introducing silver and gold nanoparticles (NPs). The aim was to investigate whether adding the metal NPs to the chitosan-siloxane composite would lead to a material with enhanced antimicrobial ability as compared to chitosan itself. The composites were synthesised in hydrogel form with the metal NPs embedded in the cross-linked chitosan network. Spectroscopic and microscopic techniques were employed to investigate the structural properties of the composite and the tensile strength of the structures was measured. It was found that the addition of metal NPs did not influence the mechanical strength of the composite. A crystal violet attachment assay results displayed a significant reduction in the attachment of E. coli to the cross-linked chitosan surfaces. Release profile tests suggest that the metal NPs do not contribute to the overall antimicrobial activity under neutral conditions. The contribution to the mechanical and antimicrobial properties from cross-linking with siloxane is significant, giving rise to a versatile, durable, antimicrobial material suitable for thin film formation, wound dressings or the coating of various surfaces where robustness and antimicrobial control are required.  相似文献   

15.
Wound healing is a series of different dynamic and complex phenomena. Many studies have been carried out based on the type and severity of wounds. However, to recover wounds faster there are no suitable drugs available, which are highly stable, less expensive as well as has no side effects. Nanomaterials have been proven to be the most promising agent for faster wound healing among all the other wound healing materials. This review briefly discusses the recent developments of wound healing by nanotechnology, their applicability and advantages. Nanomaterials have unique physicochemical, optical, and biological properties. Some of them can be directly applied for wound healing or some of them can be incorporated into scaffolds to create hydrogel matrix or nanocomposites, which promote wound healing through their antimicrobial, as well as selective anti‐ and pro‐inflammatory, and proangiogenic properties. Owing to their high surface area to volume ratio, nanomaterials have not only been used for drug delivery vectors but also can affect wound healing by influencing collagen deposition and realignment and provide approaches for skin tissue regeneration.Inspec keywords: skin, wounds, cellular biophysics, drug delivery systems, tissue engineering, hydrogels, nanocomposites, proteins, nanomedicineOther keywords: wound healing materials, nanomaterials, nanotechnology, proangiogenic properties, proinflammatory properties, collagen deposition, drug delivery vectors, skin tissue regeneration  相似文献   

16.
Nanosilver-based wound dressings were manufactured by immersing non-woven fabric material into a nanosilver solution at a concentration of 500?mg/L with an average particle size of 20–25?nm, which was produced by the aqueous molecular solution method using sodium borohydride as a reducing agent and chitosan as a stabiliser. The bactericidal activity of the nanosilver-based wound dressings has been assessed on three standard bacterial strains Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and Staphylococcus aureus ATCC 25923, as well as P. aeruginosa, S. aureus and Acinetobacter baumannii isolated from patients’ burns. The results showed that these products are effective bactericides against both the standard strains and those isolated from patients’ burns. The effect of the dressings on burn treatment has been investigated using laboratory rabbits. It was proved that for the burn healing, the produced nanosilver-coated wound dressings are as effective as the Chinese Anson's ones.  相似文献   

17.
In the current study, for the first time, photochemical facile green synthesis of salep capped silver nano-wedges was reported via the wet chemical synthesis procedure. Sunlight-UV as an available reducing agent caused mild reduction of silver ions to the silver nano-wedges. Salep as an effective capping/shaping polysaccharide bioresource material was used in the reaction medium and caused creation of flower-like self-assembled structures of the silver nano-wedges. The formation of silver nano-wedges and their flower-like self-assembled structures was confirmed by SEM technique. Further investigations were carried out using UV–vis, FTIR, GPC and XRD data. The prepared silver nano-wedges showed potent biocidal activity against three classes of microorganisms (Escherichia coli Gram-negative bacteria, Staphylococcus aureus Gram-positive bacteria and Candida albicans fungus). The silver nano-wedges prepared with this method can be introduced as real poniards because of their unique shape and antibacterial/antifungal activity and would be promising nominees for a wide range of biomedical applications.  相似文献   

18.
Silver nanocomposite films are found to be very effective material for anti-bacterial application. In the present work, sodium carboxylmethyl cellulose silver nanocomposite films (SCMC SNCF) were tried for antibacterial applications. To enhance their applicability novel film-silver nanoparticle-curcumin composites have been developed. SCMC SNCF are developed from sodium carboxylmethyl cellulose (SCMC), N,N 1 -methylenebisacrylamide (MBA) and silver nitrate solution. These films were characterized by FTIR, UV–visible, XRD, TGA, DSC and TEM techniques. The formed silver nanoparticles have an average particle size of ~15 nm as observed by transmission electron microscopy (TEM). Curcumin loading into SCMC SNCF is achieved by diffusion mechanism. The UV–Visible analysis indicated that higher encapsulation of curcumin in the films with higher SCMC content. Further, it was observed that the presence of silver nanoparticles in the films enhanced the encapsulation of curcumin indicating an interaction between them. Moreover, the antibacterial activity showed that the SCMC films generated with silver nanoparticles have a synergistic effect in the antimicrobial activity against Escherichia coli (E. coli). In order improve the healing efficacy as antibacterial agents, curcumin loaded with SCMC SNCFs were developed which showed significant inhibition of E. coli growth than the silver nanoparticles and curcumin alone film. Therefore, the present study clearly provides novel antimicrobial films which are potentially useful in preventing/treating infections.  相似文献   

19.
Chitin and chitosan are natural polymers with a huge potential in numerous fields, namely, biomedical, biological, and many industrial applications such as waste water treatment due to the fact that they can absorb and chelate many metal cations. Electrospinning is a growing field of research to produce submicron fibers with promising applications in biomedical fields like tissue engineering scaffolds and wound healing capabilities. Both chitin and chitosan polymers were found to be hard to electrospun, however, many researchers manage to produce nano-fibers using special solvents; for example, 90% acetic acid was found to reduce the surface tension making electrospinning feasible. Mixtures of organic acids were also experimented to produce homogenous and uniform fibers. Bigger attention was given to electrospinning of their soluble derivatives such as dibutyryl and carboxymethyl chitin. More derivatives of chitosan were investigated to produce nano-fibers such as hexanoyl, polyethyleneglycol, carboxymethyl, and a series of quaternized chitosan derivatives. The obtained nano-fibers were found to have much better qualities than normal chitosan fibers. Several polymer blends of chitin/chitosan with many commercial polymers were found to be amenable for electrospinning producing uniform beads free fibers. The review surveys the various approaches for successful electrospinning of chitin, chitosan, their derivatives, and blends with several other polymers.  相似文献   

20.
The present study investigates the development of methyl cellulose (MC)–sodium alginate (SA)–montmorillonite (MMT) clay based bionanocomposite films with interesting wound healing properties. The differential scanning calorimetry analysis of the composite films revealed presence of single glass transition temperature (Tg) confirming the miscible nature of the ternary blended films. The increase in MMT ratio in the composite films reduced the mobility of biopolymer chains (MC/SA) which increased the Tg of the film. Thermogravimetric analysis showed that dispersion of clay (MMT) at nano level significantly delayed the weight loss that correlated with higher thermal stability of the composite films. It was observed that the developed films were able to exhibit antimicrobial activity against four typical pathogenic bacteria found in the presence of wound. The developed films were able to significantly inhibit (10 mg/ml) the growth of Enterococcus faecium and Pseudomonas aeruginosa. In vitro scratch assay indicated potential wound closure activities of MC-2–4 bionanocomposite films at their respective highest subtoxic doses. In conclusion, these ternary bionanocomposite films were found to be promising systems for wound healing applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号