首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selection technologies such as phage and ribosome display, which provide a physical linkage between genetic information and encoded polypeptide, are important tools for the engineering of proteins for diagnostic and therapeutic applications. We have recently described a selection strategy called covalent DNA display, in which individual proteins are covalently linked to the cognate encoding DNA template in separate droplets of a water-in-oil emulsion. We here report on the optimization of several experimental steps in covalent DNA display technology, such as the elution conditions and the PCR strategy used for the amplification of selected DNA templates. A PCR assembly strategy was developed, which allows the amplification of the DNA templates over repeated rounds of selection. In addition, we could demonstrate that approximately 50% of the DNA templates form a covalent adduct with the corresponding proteins in the compartments of a water-in-oil emulsion. In model selection experiments, differences in recovery efficiency <100 000 per round of selection could be observed when comparing a specific binding polypeptide with a binder of irrelevant specificity. Furthermore, the optimized protocol was successfully applied for the selection of single domain proteins, capable of specific binding to mouse serum albumin (MSA). A mutant derived from the SH3 domain of the Fyn kinase, with millimolar affinity to MSA, was affinity matured using covalent DNA display and yielded several MSA binding FynSH3 variants with dissociation constants in the 100 nM range.  相似文献   

2.
A robust bacterial display methodology was developed that allows the rapid isolation of peptides that bind to arbitrarily selected targets with high affinity. To demonstrate the utility of this approach, a large library (5 x 10(10) clones) was constructed composed of random 15-mer peptide insertions constrained within a flexible, surface exposed loop of the Escherichia coli outer membrane protein A (OmpA). The library was screened for binding to five unrelated proteins, including targets previously used in phage display selections: human serum albumin, anti-T7 epitope mAb, human C-reactive protein, HIV-1 GP120 and streptavidin. Two to four rounds of enrichment (2-4 days) were sufficient to enrich peptide ligands having high affinity for each of the target proteins. Strong amino acid consensus sequences were apparent for each of the targets tested, with up to seven consensus residues. Isolated peptide ligands remained functional when expressed as insertional fusions within a monomeric fluorescent protein. This bacterial display methodology provides an efficient process for identifying peptide affinity reagents and should be useful in a variety of molecular recognition applications.  相似文献   

3.
4.
Here we describe the first reported use of a Gram-positive bacterial system for the selection of affinity proteins from large combinatorial libraries displayed on the surface of Staphylococcus carnosus. An affibody library of 3 x 10(9) variants, based on a 58 residue domain from staphylococcal protein A, was pre-enriched for binding to human tumor necrosis factor-alpha (TNF-alpha) using one cycle of phage display and thereafter transferred to the staphylococcal host ( approximately 10(6) variants). The staphylococcal-displayed library was subjected to three rounds of flow-cytometric sorting, and the selected clones were screened and ranked by on-cell analysis for binding to TNF-alpha and further characterized using biosensor analysis and circular dichroism spectroscopy. The successful sorting yielded three different high-affinity binders (ranging from 95 pM to 2.2 nM) and constitutes the first selection of a novel affinity protein using Gram-positive bacterial display. The method combines the simplicity of working with a bacterial host with the advantages of displaying recombinant proteins on robust Gram-positive bacteria as well as using powerful flow cytometry in the selection and characterization process.  相似文献   

5.
In vitro selection targeting an anti-polyhistidine monoclonal antibody was performed using mRNA display with a random, unconstrained 27-mer peptide library. After six rounds of selection, epitope-like peptides were identified that contain two to five consecutive, internal histidines and are biased for arginine residues, without any other identifiable consensus. The epitope was further refined by constructing a high-complexity, unidirectional fragment library from the final selection pool. Selection by mRNA display minimized the dominant peptide from the original selection to a 15-residue functional sequence (peptide Cmin: RHDAGDHHHHHGVRQ; K(D) = 38 nM). Other peptides recovered from the fragment library selection revealed a separate consensus motif (ARRXA) C-terminal to the histidine track. Kinetics measurements made by surface plasmon resonance, using purified Fab (antigen-binding fragment) to prevent avidity effects, demonstrate that the selected peptides bind with 10- to 75-fold higher affinities than a hexahistidine peptide. The highest affinity peptides (K(D) approximately 10 nM) encode both a short histidine track and the ARRXA motif, suggesting that the motif and other flanking residues make important contacts adjacent to the core polyhistidine-binding site and can contribute >2.5 kcal/mol of binding free energy. The fragment library construction methodology described here is applicable to the development of high-complexity protein or cDNA expression libraries for the identification of protein-protein interaction domains.  相似文献   

6.
Ribosome display systems are very effective and powerful tools for in vitro screening of transcribed mRNAs that encode proteins (or peptides) with specific (known or unknown) functions. We have modified such a system by exploiting the interaction between a tandemly fused MS2 coat-protein (MSp) dimer and the RNA sequence of the corresponding specific binding motif, C-variant (or Cv). We placed the MSp dimer at the N-terminus of a nascent protein and the Cv binding motif was attached to the 5' end of the protein's mRNA. This configuration enhanced the stability of the ribosome-mRNA complex. We demonstrate here that this improved ribosome display system provides an effective method for identifying the gene for a protein that binds to a protein of interest. We visualized the formation of polysome complexes in this advanced polysome display by atomic force microscopy (AFM) and found that the AFM images of polysomes in our system were different from those observed in the case of conventional ribosome display systems. Our results suggest that our technology might usefully complement yeast two-hybrid assays.  相似文献   

7.
Display systems connect a protein with the DNA encoding it. Such systems (e.g., phage or ribosome display) have found widespread application in the directed evolution of protein binders and constitute a key element of the biotechnological toolkit. In this proof‐of‐concept study we describe the construction of a system that allows the display of multiple copies of a protein of interest in order to take advantage of avidity effects during affinity panning. To this end, dendrimer‐like DNA is used as a scaffold with docking points that can join the coding DNA with multiple protein copies. Each DNA construct is compartmentalised in water‐in‐oil emulsion droplets. The corresponding protein is expressed, in vitro, inside the droplets as a SNAP‐tag fusion. The covalent bond between DNA and the SNAP‐tag is created by reaction with dendrimer‐bound benzylguanine (BG). The ability to form dendrimer‐like DNA straightforwardly from oligonucleotides bearing BG allowed the comparison of a series of templates differing in size, valency and position of BG. In model selections the most efficient constructs show recoveries of up to 0.86 % and up to 400‐fold enrichments. The comparison of mono‐ and multivalent constructs suggests that the avidity effect enhances enrichment by up to fivefold and recovery by up to 25‐fold. Our data establish a multivalent format for SNAP‐display based on dendrimer‐like DNA as the first in vitro display system with defined tailor‐made valencies and explore a new application for DNA nanostructures. These data suggest that multivalent SNAP dendrimers have the potential to facilitate the selection of protein binders especially during early rounds of directed evolution, allowing a larger diversity of candidate binders to be recovered.  相似文献   

8.
Directing phage selections towards specific epitopes   总被引:1,自引:0,他引:1  
It is possible to direct selections from antibody repertoiresdisplayed on filamentous phage towards unique epitopes on proteinantigens by competing with related molecules. A phage displayrepertoire of human single chain Fvs (scFvs) was panned threetimes against foetal haemoglobin (HbF). The selection was dominatedby one clone with a Kd of 10 nM but yielded at least 17 others,all of which bound HbF but crossreacted with adult haemoglobin(HbA). To direct selection towards HbF-specific epitopes, therepertoire was preincubated with HbA in solution before eachpanning. Crossreactive scFvs can form complexes with the solubleHbA and thereby be prevented from binding the immobilized HbF.Four clones with preferential binding to HbF emerged under theseconditions. One of these (Hb-1), with a Kd of 6 µM, hadexquisite specificity for HbF and could distinguish cells expressingHbF from those expressing HbA by immunocytochemistry and flowcytometry. This antibody has an affinity that is 600-fold lowerthan the dominant crossreactive clone, and so only emerged underconditions of ‘competitive deselection’. Thus, competitivedeselection is a viable means for directing selections towardsuseful epitopes. It permits a more effective ‘search’of phage display repertoires and allows the emergence of loweraffinity clones with useful specificities. These clones maybe useful in themselves or may serve as leads for in vitro affinitymaturation.  相似文献   

9.
Ribosome display of mammalian receptor domains   总被引:2,自引:0,他引:2  
Many mammalian receptor domains, among them a large number of potential therapeutic target proteins, are highly aggregation-prone upon heterologous expression in bacteria. This severely limits functional studies of such receptor domains and also their engineering towards improved properties. One of these proteins is the Nogoreceptor, which plays a central role in mediating the inhibition of axon growth and functional recovery after injury of the adult mammalian central nervous system. We show here that the ligand binding domain of the Nogoreceptor folds to an active conformation in ternary ribosomal complexes, as formed in ribosome display. In these complexes the receptor is still connected, via a C-terminal tether, to the peptidyl tRNA in the ribosome and the mRNA also stays connected. The ribosome prevents aggregation of the protein, which aggregates as soon as the release from the ribosome is triggered. In contrast, no active receptor was observed in phage display, where aggregation appears to prevent incorporation of the protein into the phage coat. This strategy sets the stage for rapidly studying defined mutations of such aggregation-prone receptors in vitro and to improve their properties by in vitro evolution using the ribosome display technology.  相似文献   

10.
Ribosome display is a powerful in vitro technology for the selection and directed evolution of proteins. However, this technology has so far been perceived as being technically challenging owing to comparatively difficult protocols and the absence of tailored commercial reagents, particularly when using prokaryotic cell-free expression systems. Eukaryotic ribosome display is potentially a more accessible alternative because of the availability of suitable commercial reagents, yet despite published protocols, this method has been less widely used. For eukaryotic ribosome display, a novel mechanism of mRNA recovery compared with that of the well-proven prokaryotic method has been proposed. We have examined the eukaryotic ribosome display process with the aims of investigating the proposed mechanism of sequence recovery and of identifying aspects of the protocol that may have lead to poor performance and therefore so far limited its use. We demonstrate that the proposed novel method is in fact mechanistically comparable to the prokaryotic method and we provide a step-by-step protocol for eukaryotic ribosome display that is 20-fold more efficient than current published methods. Our findings should increase the ease of operating ribosome display technology, making it more accessible to the scientific community.  相似文献   

11.
Filamentous phage do not display cytoplasmic proteins very effectively. As T7 is a cytoplasmic phage, released by cell lysis, it has been prospected as being more efficient for the display of such proteins. Here we investigate this proposition, using a family of GFP-based cytoplasmic proteins that are poorly expressed by traditional phage display. Using two single-molecule detection techniques, fluorescence correlation spectroscopy and anti-bunching, we show that the number of displayed fluorescent proteins ranges from one to three. The GFP derivatives displayed on T7 contain binding loops able to recognize specific targets. By mixing these in a large background of non-binders, these derivatives were used to optimize selection conditions. Using the optimal selection conditions determined in these experiments, we then demonstrated the selection of specific binders from a library of GFP clones containing heavy chain CDR3 antibody binding loops derived from normal donors inserted at a single site. The selected GFP-based binders were successfully used to detect binding without the use of secondary reagents in flow cytometry, fluorescence-linked immunosorbant assays and immunoblotting. These results demonstrate that specific GFP-based affinity reagents, selected from T7-based libraries, can be used in applications in which only the intrinsic fluorescence is used for detection.  相似文献   

12.
Isolation of antibodies to antigens that are either unstable, exist in multiple morphologies or have very limited availability can be prohibitively difficult. Here we describe a novel technique combining the capabilities of phage display antibody technology and atomic force microscopy (AFM) that is used to isolate antibody fragments that bind to a specific morphology of the target antigen, alpha-synuclein. AFM imaging allows us to both visualize the presence and morphology of the target antigen as well as to monitor the efficiency of each step in the bio-panning process. We demonstrate that phage displayed antibodies specific to the target antigen morphology can be isolated after only two rounds of selection. The target antigen, alpha-synuclein, has been correlated with the Parkinson's disease (PD). Accumulation of alpha-synuclein fibrillar aggregates into Lewy body inclusions is a hallmark feature of PD. While alpha-synuclein can form several different aggregate morphologies including oligomers, protofibrils and fibrils, the role of these morphologies in the progression of PD is not known. The successful selection of the recombinant antibody described here can have potential therapeutic value since the single-chain fragment variable (scFv) can be expressed intracellularly to control folding and toxicity of the specific protein aggregates.  相似文献   

13.
RGD peptides targeting alphav-integrins are promising ligands for the generation of vascular targeting agents. We isolated from phage display RGD motif libraries novel high-affinity cyclic RGD peptides by selection on either endothelial or melanoma cells. Although the starting sequences contained only two cysteine residues flanking the RGD motif, several of the isolated peptides possessed four cysteine residues. A high-affinity peptide (RGD10) constrained by only one disulfide bond was used to generate novel lipopeptides composed of a lipid anchor, a short flexible spacer and the peptide ligand conjugated to the spacer end. Incorporation of RGD10 lipopeptides into liposomes resulted in specific and efficient binding of the liposomes to integrin-expressing cells. In vivo experiments applying doxorubicin-loaded RGD10 liposomes in a C26 colon carcinoma mouse model demonstrated improved efficacy compared with free doxorubicin and untargeted liposomes.  相似文献   

14.
Affibody molecules specific for the epidermal growth factor receptor (EGFR) have been selected by phage display technology from a combinatorial protein library based on the 58-residue, protein A-derived Z domain. EGFR is overexpressed in various malignancies and is frequently associated with poor patient prognosis, and the information provided by targeting this receptor could facilitate both patient diagnostics and treatment. Three selected Affibody variants were shown to selectively bind to the extracellular domain of EGFR (EGFR-ECD). Kinetic biosensor analysis revealed that the three monomeric Affibody molecules bound with similar affinity, ranging from 130 to 185 nM. Head-to-tail dimers of the Affibody molecules were compared for their binding to recombinant EGFR-ECD in biosensor analysis and in human epithelial cancer A431 cells. Although the dimeric Affibody variants were found to bind in a range of 25-50 nM affinities in biosensor analysis, they were found to be low nanomolar binders in the cellular assays. Competition assays using radiolabeled Affibody dimers confirmed specific EGFR-binding and demonstrated that the three Affibody molecules competed for the same epitope. Immunofluorescence microscopy demonstrated that the selected Affibody dimers were initially binding to EGFR at the cell surface of A431, and confocal microscopy analysis showed that the Affibody dimers could thereafter be internalized. The potential use of the described Affibody molecules as targeting agents for radionuclide based imaging applications in various carcinomas is discussed.  相似文献   

15.
Yeast display is a powerful tool for increasing the affinity and thermal stability of scFv antibodies through directed evolution. Mammalian calmodulin (CaM) is a highly conserved signaling protein that undergoes structural changes upon Ca(2+) binding. In an attempt to generate conformation-specific antibodies for proteomic applications, a selection against CaM was undertaken. Flow cytometry-based screening strategies to isolate easily scFv recognizing CaM in either the Ca(2+)-bound (Ca(2+)-CaM) or Ca(2+)-free (apo-CaM) states are presented. Both full-length scFv and single-domain VH only clones were isolated. One scFv clone having very high affinity (K(d) = 0.8 nM) and specificity (>1000-fold) for Ca(2+)-CaM was obtained from de novo selections. Subsequent directed evolution allowed the development of antibodies with higher affinity (K(d) = 1 nM) and specificity (>300-fold) for apo-CaM from a parental single-domain clone with both a modest affinity and specificity for that particular isoform. CaM-binding activity was unexpectedly lost upon conversion of both conformation-specific clones into soluble fragments. However, these results demonstrate that conformation-specific antibodies can be quickly and easily isolated by directed evolution using the yeast display platform.  相似文献   

16.
There is a great deal of interest in proteins that can bind covalently to target molecules, as they allow unambiguous experiments by tight binding to molecules of interest. Here, we report the generation of proteins that undergo covalent labeling with small molecules through in vitro selection by using ribosome display. Selection was performed from a mutant library of the WW domain with a biotinylated peptide as its binding target, in which the biotin and the peptide are connected by a disulfide bond. After five rounds of selection, we identified mutants carrying a particular cysteine mutation. The binding target reacted specifically with the selected mutant, even in the presence of other proteins, and resulted in the generation of biotin- or peptide-labeled WW domains by thiol-disulfide exchange. When the mutant was fused to a protein of interest, the fusion protein was also labeled with biotin. Thus, the characteristics of the selected mutant should be suitable as a tag sequence that can be covalently labeled with small synthetic molecules. These results indicate that the rapid and efficient generation of such proteins is possible by ribosome display.  相似文献   

17.
An Achilles heel inherent to all molecular display formats, background binding between target and display system introduces false positives into screens and selections. For example, the negatively charged surfaces of phage, mRNA, and ribosome display systems bind with unacceptably high nonspecificity to positively charged target molecules, which represent an estimated 35% of proteins in the human proteome. Here we report the first systematic attempt to understand why a broad class of molecular display selections fail, and then solve the underlying problem for both phage and RNA display. Firstly, a genetic strategy was used to introduce a short, charge-neutralizing peptide into the solvent-exposed, negatively charged phage coat. The modified phage (KO7(+)) reduced or eliminated nonspecific binding to the problematic high-pI proteins. In the second, chemical approach, nonspecific interactions were blocked by oligolysine wrappers in the cases of phage and total RNA. For phage display applications, the peptides Lys(n) (where n=16 to 24) emerged as optimal for wrapping the phage. Lys(8), however, provided effective wrappers for RNA binding in assays against the RNA binding protein HIV-1 Vif. The oligolysine peptides blocked nonspecific binding to allow successful selections, screens, and assays with five previously unworkable protein targets.  相似文献   

18.
Protein scaffolds derived from non-immunoglobulin sources are increasingly being adapted and engineered to provide unique binding molecules with a diverse range of targeting specificities. The ColE7 immunity protein (Im7) from Escherichia coli is potentially one such molecule, as it combines the advantages of (i) small size, (ii) stability conferred by a conserved four anti-parallel alpha-helical framework and (iii) availability of variable surface loops evolved to inactivate members of the DNase family of bacterial toxins, forming one of the tightest known protein-protein interactions. Here we describe initial cloning and protein expression of Im7 and its cognate partner the 15 kDa DNase domain of the colicin E7. Both proteins were produced efficiently in E.coli, and their in vitro binding interactions were validated using ELISA and biosensor. In order to assess the capacity of the Im7 protein to accommodate extensive loop region modifications, we performed extensive molecular modelling and constructed a series of loop graft variants, based on transfer of the extended CDR3 loop from the IgG1b12 antibody, which targets the gp120 antigen from HIV-1. Loop grafting in various configurations resulted in chimeric proteins exhibiting retention of the underlying framework conformation, as measured using far-UV circular dichroism spectroscopy. Importantly, there was low but measurable transfer of antigen-specific affinity. Finally, to validate Im7 as a selectable scaffold for the generation of molecular libraries, we displayed Im7 as a gene 3 fusion protein on the surface of fd bacteriophages, the most common library display format. The fusion was successfully detected using an anti-Im7 rabbit polyclonal antibody, and the recombinant phage specifically recognized the immobilized DNase. Thus, Im7 scaffold is an ideal protein display scaffold for the future generation and for the selection of libraries of novel binding proteins.  相似文献   

19.
Phage display of antibody libraries has been widely used for over a decade to generate monoclonal antibodies. Yeast display has been developed more recently. Here the two approaches were directly compared using the same HIV-1 immune scFv cDNA library expressed in phage and yeast display vectors and using the same selecting antigen (HIV-1 gp120). Yeast display was shown to sample the immune antibody repertoire considerably more fully than phage display, selecting all the scFv identified by phage display and twice as many novel antibodies. Positive phage display selection appeared to largely reflect those antibodies that as phage-scFv gave the highest signal in phage ELISAs assessing antigen binding. This signal is thought to reflect the efficiency of expression of folded scFv at the phage surface. Increased access to immune repertoires may increase the rescue of novel antibodies of therapeutic or analytical value that often form a minor part of a typical antibody response.  相似文献   

20.
Beside the interaction of the antigen-presenting major histocompatibility complex with the T-cell receptor, a co-stimulatory signal is required for T-cell activation in an immune response. To reduce immune-mediated graft rejection in corneal transplantation, where topical application of drugs in ointments or eye-drops may be possible, we selected single-chain antibody fragments (scFv) with binding affinity to rat CD86 (B7.2) that inhibit the co-stimulatory signal. We produced the IgV-like domain of rat CD86 as a fusion protein in Escherichia coli by refolding from inclusion bodies. This protein was used as a target for phage display selection of scFv from HuCAL-1, a fully artificial human antibody library. Selected binding molecules were shown to specifically bind to rat CD86 and inhibit the interaction of CD86 with CD28 and CTLA4 (CD152) in flow cytometry experiments. In an assay for CD86-dependent co-stimulation, the selected scFv fragment successfully inhibited the proliferation of T-cells induced by CD86-expressing P815 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号