首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
针对传统异常流量检测方法检测精度较低, Hurst指数估计受估计序列尺度的影响, 提出了基于分数阶傅里叶变换(FRFT)估计Hurst指数的方法。在此基础上, 实现了基于Hurst指数变化的异常检测, 有效解决了方法实现过程中FRFT最佳估计的分数阶阶数选择及Hurst参数求解的关键问题。实验表明, 基于FRFT的估计不受序列非平稳性影响, 对Hurst指数估计具有较高的估计精度, 并且可以准确地检测网络异常。  相似文献   

2.
基于流量信息结构的异常检测   总被引:4,自引:0,他引:4       下载免费PDF全文
朱应武  杨家海  张金祥 《软件学报》2010,21(10):2573-2583
由于人们对网络流量规律的认识还不够深入,大型高速网络流量的异常检测仍然是目前测量领域研究的一个难点问题.通过对网络流量结构和流量信息结构的研究发现,在一定范围内,正常网络流量的IP、端口等具有重尾分布和自相似特性等较为稳定的流量结构,这种结构对应的信息熵值较为稳定.异常流量和抽样流量的信息熵值以正常流量信息熵值为中心波动,构成以IP、端口和活跃IP数量为维度的空间信息结构.据此对流量进行建模,提出了基于流量信息结构的支持向量机(support vector machine,简称SVM)的二值分类算法,其核心是将流量异常检测转化为基于SVM的分类决策问题.实验结果表明,该算法具有很高的检测效率,还初步验证了该算法的抽样检测能力.因此,将该算法应用到大型高速骨干网络具有实际意义.  相似文献   

3.
《计算机工程》2018,(1):165-170
由于部分网络异常对流量变化影响不明显,流量分析难以发现此类异常。传统基于主成分分析的网络异常流量检测方法追求全局最优解,对局部特征提取不充分,导致对连续异常不敏感,降低了异常流量的检测精度,且物理意义不明确。针对上述问题,在多维信息熵的基础上,提出梯度投影非负矩阵分解异常流量检测方法。将流量数据处理为多维特征熵矩阵,用梯度投影非负矩阵分解方法重构多维熵矩阵,分离出正常和异常子空间,采用多元统计过程控制方法中的Q图检测异常。实验结果表明,与以流量分析为基础的主成分分析方法、传统非负矩阵分解方法相比,该方法能更快、更准确地检测出连续异常,对流量变化不敏感的低速分布式拒绝服务攻击检测效果明显提高,对蠕虫攻击更加敏感。  相似文献   

4.
当前网络安全问题已成为网络世界的重要课题,如何有效的检测和响应则成为一项重大挑战。实际上,为保持超前于高级网络安全威胁的发展,网络检测、响应和取证解决方案必须要综合多种方法,本文通过研究和设计一种网络异常流量分析检测系统,主要将机器学习的方法应用在网络异常流量分析检测,实现对网络异常流量的有效分析和高准确率检测,从而达到洞悉网络中的恶意活动,并将可疑行为匹配到确认的威胁,提高对网络异常流量的检测目的。  相似文献   

5.
当前网络流量数据规模较大且分布不均衡,传统网络流量异常检测方法检测准确率较低。提出一种结合马氏距离和自编码器的检测方法,使用马氏距离倒数及判别阈值快速检测部分正常数据以减少训练数据量,同时,在自编码器代价函数中添加马氏距离度量项以增强自编码器的特征提取能力。在此基础上,将自编码器与分类器相结合以解决网络参数初始化问题,并通过调整自编码神经网络交叉熵损失函数中各项的权重,提高自编码神经网络对数据分布不均衡数据集的训练效果。实验结果表明,该方法在CICIDS2017数据集、NSL-KDD数据集上的异常检测准确率分别高达97.60%、99.84%,在CICIDS2017数据集上的F1值为0.941 3,高于DNN、LSTM、C-LSTM等方法。  相似文献   

6.
李闰平  李斌  王垚 《微计算机信息》2008,24(12):166-167
提出一种时间序列的相似度计算方法,采用统计学中相关因子的思想,用来衡量两段时间序列数据在视觉上的相似程度.在在各种时间序列数据实时检测中,能快速检测到具有周期性数据的异常并定位异常源,实验证明用于异常检测时效果较好.  相似文献   

7.
基于mallat算法的自相似网络流量随机建模   总被引:1,自引:0,他引:1  
王伟  彭锡涛 《计算机应用》2003,23(11):4-5,8
传统的网络流量自相似模型均从分形函数入手,计算复杂。文中应用小波变换对流量序列样本进行mallat多分辨分析,并重构各层数据,再随机拆分组合所得重构序列来进行仿真。所生成的仿真流量符合聚合方差估计,具有较好的自相似性。  相似文献   

8.
张烁  赵荣彩  安克 《计算机工程》2009,35(7):107-109
研究并实现一种自相似测试流量生成技术,比较多种典型自相似流量分析模型,利用多分形小波作为自相似测试流量的生成模型,设计自相似测试流量生成算法。将该算法应用于基于IXP2400可编程多核多线程处理器构建的网络测试系统,在区间(0.5、1.0)内生成满足不同Hurst值的自相似测试流量,通过实验验证该技术的可用性和有效性。  相似文献   

9.
基于相似度的DDoS异常检测系统   总被引:2,自引:0,他引:2  
实现了一种基于相似度的DDoS异常检测系统,利用网络流量高频统计结果的相似性建立模型,当发生DDoS攻击时这种相似性遭到破坏,使用相似度作为这种相似性的测度,通过与正常情况时的比较可以及时准确地发现DDoS攻击引起的异常。实验结果证明基于相似度的异常检测方法对DDoS攻击检测效果较好。  相似文献   

10.
为了提高网络流量异常的检出率,研究基于机器学习的网络流量异常检测方法。先通过K-means聚类算法分别得到网络流量异常数据簇,再将其输入双向长短期记忆网络和注意力机制模型,实现网络流量异常检测。实验结果表明,所提方法实用性良好,可提升网络流量异常检测的性能。  相似文献   

11.
针对分组无关问题模型存在隐私泄露的问题,提出一种改进的分组无关问题模型,采用随机响应的方法,通过对原始数据进行伪装变换处理,实现具有隐私保护的关联规则挖掘。实验结果表明,改进后的模型在伪装变换后的数据集上挖掘出的规则与原始数据规则相比,保证了低误差,具有较好的隐私保护性。  相似文献   

12.
真实的网络流量普遍存在统计上的自相似性,因此传统的基于泊松过程和马尔科夫模型等已不能反映实际测量的流量.针对传统检测方法存在的问题,将基于Hurst参数评估应用到DoS攻击检测中,由H参数变化来检测DoS攻击.通过分析DARPA 1998入侵检测数据表明,基于该法的Hurst参数评估能够检测到DoS攻击,此法比传统的基于特征匹配的网络流量异常检测法在检测精度上有较大提高.  相似文献   

13.
徐玉华  孙知信 《软件学报》2020,31(1):183-207
软件定义网络(software defined networking,简称SDN)是一种新型的网络架构.SDN将控制层从数据层分离并开放网络接口,以实现网络集中控制并提高网络的可扩展性和编程性.但是SDN也面临诸多的网络安全威胁.异常流量检测技术可以保护网络安全,防御恶意流量攻击.对SDN异常流量检测进行了全面的研究,归纳了数据平面和控制平面可能遭受到的网络攻击;介绍并分析了位于应用平面、控制平面和中间平台的异常流量检测框架;探讨了异常流量识别机制、负载均衡机制、异常流量追溯机制和异常缓解机制;最后指明SDN异常流量检测在未来工作中的研究方向.  相似文献   

14.
基于自适应阈值的网络流量异常检测算法   总被引:1,自引:1,他引:1  
曹敏  程东年  张建辉  吴曦 《计算机工程》2009,35(19):164-167
网络流量异常检测大多采用固定阈值进行异常判断,无法精确刻画网络异常行为,从而影响检测精度。针对上述问题提出一种自适应阈值异常检测算法,通过刷新机制叠加前一时刻的行为,得出动态的阈值作为判断当前时刻检测点是否异常的准则,通过标准差设定置信区间,以更准确地描述网络状况。仿真实验及比较结果表明该算法能有效提高异常检测精度。  相似文献   

15.
基于Netflow的异常流量分离以及归类   总被引:1,自引:0,他引:1  
针对以往的各种异常流量检测算法只能在宏观上进行流量异常监测,不能进一步实时地将异常流量分离处理,提出了在Netflow流数据环境下对单体IP历史数据的研究的方法,通过对单体IP统计、预测,能快速的检测出导致网络异常流量的主机,并根据其流的类型判断,分类以发现其发生异常的原因并提供ACL策略,从而将网络流量控制在稳定的空间和时间之内,实验结果表明了此方法的可行性和有效性.  相似文献   

16.
本文提出构建基于网络协议的异常流量识别模型,结合网络协议分析、网络入侵检测技术等对网络数据层进行解析,通过对频繁IP 地址进行聚集发现网络中的异常流量IP 地址集合,统计出异常数据包。通过DDOS攻击实验结果分析得出,该模型具有较高的识别能力,并且在处理效率和计算强度方面都有很好的表现。  相似文献   

17.
针对传统基于聚类分析的网络流量异常检测方法准确性较低的问题,提出了一种基于改进 k-means聚类的流量异常检测方法。通过对各类流量特征数据的预处理,使k-means算法能适用于枚举型数据检测,进而给出一种基于数值分布分析法的高维数据特征筛选方法,有效解决了维数过高导致的距离失效问题,并运用二分法优化K个聚簇的划分,减少了初始聚类中心选择对k-means算法结果的影响,进一步提高了算法的检测率。最后通过仿真实验验证了所提出算法的有效性。  相似文献   

18.
介绍网络业务流自相似特性的研究进展,并对自相似特性的产生进行了深入分析。研究自相似特性对网络技术的影响,对进一步研究网络业务量的自相似性有理论指导意义。  相似文献   

19.
针对现有方法仅分析粗粒度的网络流量特征参数,无法在保证检测实时性的前提下识别出拒绝服务(DoS)和分布式拒绝服务(DDoS)的攻击流这一问题,提出一种骨干网络DoS&DDoS攻击检测与异常流识别方法。首先,通过粗粒度的流量行为特征参数确定流量异常行为发生的时间点;然后,在每个流量异常行为发生的时间点对细粒度的流量行为特征参数进行分析,以找出异常行为对应的目的IP地址;最后,提取出与异常行为相关的流量进行综合分析,以判断异常行为是否为DoS攻击或者DDoS攻击。仿真实验的结果表明,基于流量行为特征的DoS&DDoS攻击检测与异常流识别方法能有效检测出骨干网络中的DoS攻击和DDoS攻击,并且在保证检测实时性的同时,准确地识别出与攻击相关的网络流量  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号