共查询到19条相似文献,搜索用时 78 毫秒
1.
《控制理论与应用》2015,(9)
对具有不等长时段的多时段批次过程进行监测是十分重要而且具有一定难度的.时段在批次间的错位现象导致时间方向的不同过程特性混合在一起,这给时段分析以及在线应用带来了一系列的问题.为了解决不等长所带来的问题,本文提出一种基于不等长时段有序识别及建模的故障检测方法.该方法的主要贡献包括以下方面:1)该方法通过步进地衡量过程的变量相关性对模型精度以及监测性能的影响,自动有序地识别出每个不等长时段;2)在每个时段内,通过对不规则的过程数据进行整合建立了时段模型以捕捉不规则的时段特性;3)本文提供了一种简单而有效的在线判断新样本隶属时段和监测其运行状态的方法.最后,本文通过一个实例-具有不等长批次长度的注塑过程阐述了本方法的有效性. 相似文献
2.
间歇过程的多时段特性直接影响多元统计分析过程建模的准确性。针对间歇过程多时段特性,本文提出一种基于平行因子分解2(PARAFAC2)时段划分的间歇过程故障检测方法,首先对每一个时间片矩阵进行PARAFAC2建模,得到时间片矩阵的模型控制限,然后从间歇过程初始时刻开始,按照时序依次将每个时间片添加到时间块并进行PARAFAC2建模,得到时间块矩阵的模型控制限,通过评估时间片和时间块模型控制限的差异性确定初始时段划分点,并利用时段评价划分指标(PPCI)获取最佳的时段划分结果,最后在所得结果基础上分别对各个时段构建MPCA故障检测模型,实现间歇过程故障检测。所提方法保留了间歇过程三维结构特征和数据的完整性,深入考虑了间歇过程实际运行的时序性,提高了故障检测的准确性。利用青霉素发酵过程仿真实验验证了所提方法的有效性。 相似文献
3.
基于时段的间歇过程统计建模、在线监测及质量预报 总被引:2,自引:0,他引:2
首先针对基于多元统计技术的间歇过程统计建模、在线监测、故障诊断及质量预测等热点问题进行了论述, 回顾了各类方法的发展, 并分析了各自的优缺点. 接下来重点针对间歇工业过程多时段及时段过渡特性, 详细介绍了基于时段的统计分析策略, 分析了各时段的潜在过程行为及其对产品质量的影响与作用关系, 探讨了该思想方法的本质依据, 揭示了其研究价值和重要意义. 最后从解决实际问题的角度出发, 发掘了其存在的潜在问题及今后的研究前景与发展空间. 基于时段的间歇过程多元统计分析是一个既有理论意义又有较高实际应用价值的研究课题, 必将有利于后续的过程监测、故障诊断及质量改进. 相似文献
4.
为了提高不等长间歇过程故障诊断的性能, 同时降低算法的复杂度, 提出了一种基于统计特征的不等长间歇过程故障诊断算法。首先计算每个不等长批次的均值、方差、偏度、峭度和任意两个变量间的欧氏距离, 并将这些统计特征组合成一个等长的特征向量; 然后运用主元分析(PCA)进行过程监视。半导体工业实例的仿真结果表明, 与传统的多向主元分析(MPCA)方法相比, 基于统计特征的不等长间歇过程故障诊断算法的故障诊断率提高15%, 故障检测时间减少了0. 002 s, 因此该算法具有很好的故障诊断性能。 相似文献
5.
针对间歇过程的多时段特性,提出一种生产过程操作时段划分方法.该方法利用反映过程特性变化的负载矩阵以及主成份矩阵的变化实现了间歇过程子时段的两步划分.提出了基于加权负载向量夹角余弦的负载矩阵相似性度量以及基于加权奇异值变化的奇异值矩阵相似性度量方法,以更客观的反映负载矩阵以及奇异值矩阵的相似性,进而更准确的判断过程特性的变化.根据同一操作子时段的过程特性,其负载矩阵和奇异值矩阵相似性较大的特点,实现了生产过程的子时段划分.将基于子时段划分的多向主元分析(MPCA)建模应用于三水箱系统的在线监测和故障变量追溯,实验结果验证了该方法的有效性. 相似文献
6.
多时段特性是间歇过程的本质特性之一,对间歇过程实现有效的时段划分是故障监测的基础。传统的时段划分方法大多针对过程的输入输出数据,对输入输出数据突变较为敏感。本文提出一种基于瞬时频率响应函数的间歇过程时段划分方法,该方法基于系统的瞬时动态特性,用瞬时频率响应函数替代输入输出数据进行时段划分,利用小波变换估计系统的瞬时频率响应函数进行核主元分析降维,通过模糊C均值聚类对降维后频率响应函数进行聚类划分时段。实验结果表明,本文所提出的方法能够实现对间歇过程的时段划分,并具有较高的鲁棒性。 相似文献
7.
8.
针对批次过程非线性、多模态等特征,提出一种基于判别核主元k近邻(Dis-kPCkNN)的故障检测方法。首先,在核主元分析(kPCA)中,高斯核的窗宽参数依据样本类别标签在类内窗宽和类间窗宽中判别选取,使得核矩阵能有效提取数据的关联特征,保持数据的类别信息;其次,在核主元空间中引用k近邻规则代替传统的T2统计方法,k近邻规则可以有效处理主元空间非线性和多模态等特征的故障检测问题。数值模拟实例和半导体蚀刻工艺过程仿真实验表明:基于判别核主元k近邻方法可以有效地处理具有非线性和多模态结构特征的故障检测问题,提高计算的效率,减少内存的占用,并且故障检测率明显优于传统方法。 相似文献
9.
10.
针对一些批处理过程中,如同步批轨迹处理和多峰分布等问题,提出了一种基于统计模量(statistics pattern analysis,SPA)分析连续过程的故障诊断方法.FD-SPA和MPCA的显著差别是前者的监测对象是批次变量的统计特征,而后者监控过程变量.MPCA通过分析过程变量的方差—协方差进行故障检测,在SPA中,既要统计过程变量的均值与方差,又要统计过程变量间的协方差结构、偏度、峭度、自相关和互相关性.提出了一种基于滑动窗口的统计模量方法监测非线性的连续过程,使故障检测的准确性与可靠性得到提高.通过在TE过程中与传统的MPCA和KNN方法对比,验证了此方法的有效性. 相似文献
11.
A method of Bayesian belief network (BBN)-based sensor fault detection and identification is presented. It is applicable to processes operating in transient or at steady-state. A single-sensor BBN model with adaptable nodes is used to handle cases in which process is in transient. The single-sensor BBN model is used as a building block to develop a multi-stage BBN model for all sensors in the process under consideration. In the context of BBN, conditional probability data represents correlation between process measurable variables. For a multi-stage BBN model, the conditional probability data should be available at each time instant during transient periods. This requires generating and processing a massive data bank that reduces computational efficiency. This paper presents a method that reduces the size of the required conditional probability data to one set. The method improves the computational efficiency without sacrificing detection and identification effectiveness. It is applicable to model- and data-driven techniques of generating conditional probability data. Therefore, there is no limitation on the source of process information. Through real-time operation and simulation of two processes, the application and performance of the proposed BBN method are shown. Detection and identification of different sensor fault types (bias, drift and noise) are presented. For one process, a first-principles model is used to generate the conditional probability data, while for the other, real-time process data (measurements) are used. 相似文献
12.
半导体生产过程是典型的间歇过程,针对其过程数据的多模态、多阶段、模态结构不同和批次不等长等特点,提出了基于统计模量的局部近邻标准化和k近邻相结合的故障检测方法(SP-LNS-kNN)。首先计算样本的统计模量,其次对样本的统计模量使用其局部K近邻集进行标准化,最后计算样本与其前k近邻距离,得到平均累积距离D作为检测指标,进而对工业过程故障进行在线检测。统计模量保留了数据的主要信息,将二维样本数据简化为一维数据。局部近邻标准化可以有效降低中心漂移、模态结构差异明显的影响。SP-LNS-kNN不仅能够对大故障实现检测,并且能够提高对小模态的微弱故障的检测能力。使用SP-LNS-kNN对一个实际半导体生产过程数据进行故障检测实验,并将实验结果与PCA、kPCA、LOF和FD-kNN方法的结果进行对比分析,验证了本文方法的有效性。 相似文献
13.
Chemometrics, the application of mathematical and statistical methods to the analysis of chemical data, is finding ever widening applications in the chemical process environment. This article reviews the chemometrics approach to chemical process monitoring and fault detection. These approaches rely on the formation of a mathematical/statistical model that is based on historical process data. New process data can then be compared with models of normal operation in order to detect a change in the system. Typical modelling approaches rely on principal components analysis, partial least squares and a variety of other chemometric methods. Applications where the ordered nature of the data is taken into account explicitly are also beginning to see use. This article reviews the state-of-the-art of process chemometrics and current trends in research and applications. 相似文献
14.
《Journal of Process Control》2014,24(1):13-26
A multi-block progressive modelling approach is proposed for enhanced fault isolation in batch processes. The unfolding of batch data typically leads to matrices with a large number of columns and this complicates contribution analysis. In order to rapidly focus fault isolation in batch processes, it would be desirable to employ multi-block modelling techniques. Multi-block model such as consensus principal component analysis (CPCA) can produce multiple monitoring charts for sub-blocks and block loadings and block scores can be obtained which can represent unique behaviour of each sub-block. CPCA model uses super score which is the same as score from normal principal component analysis (PCA) model and it does not produce enhanced monitoring performance. Multi-block PCA (MBPCA) model using block score for model calculation can represent sub-blocks’ character but block scores are obtained from super loading so it may not be the best way to describe sub-blocks. A new MBPCA model is proposed for better expression of each sub-block. Through progressive modelling and contribution analysis, variables related to or affected by the fault, as well as the associated time information, are gradually identified. This enables a fault propagation path being established. The proposed method is applied to a benchmark simulated penicillin production process, PenSim. 相似文献
15.
Rosa M. Fernández-Cantí Joaquim Blesa Sebastian Tornil-Sin 《International journal of systems science》2016,47(7):1710-1724
This paper deals with the problem of set-membership identification and fault detection using a Bayesian framework. The paper presents how the set-membership model estimation problem can be reformulated from the Bayesian viewpoint in order to, first, determine the feasible parameter set in the identification stage and, second, check the consistency between the measurement data and the model in the fault-detection stage. The paper shows that, assuming uniform distributed measurement noise and uniform model prior probability distributions, the Bayesian approach leads to the same feasible parameter set than the well-known set-membership technique based on approximating the feasible parameter set using sets. Additionally, it can deal with models that are nonlinear in the parameters. The single-output and multiple-output cases are addressed as well. The procedure and results are illustrated by means of the application to a quadruple-tank process. 相似文献
16.
17.
传统的基于数据驱动的间歇过程故障诊断方法往往需要对过程数据的分布进行假设,而且对非线性等复杂数据的监控往往会出现误报和漏报,为此提出一种基于长短期记忆网络(LSTM)与批规范化(BN)结合的监督学习方法,不需要对原始数据的分布进行假设。首先,对间歇过程原始数据运用一种按变量展开并连续采样的预处理方式,使处理后的数据可以向LSTM单元输入;然后,利用改进的深层LSTM网络进行特征学习,该网络通过添加BN层,结合交叉熵损失的表示方法,可以有效提取间歇过程数据的特征并进行快速学习;最后,在一类半导体蚀刻过程上进行仿真实验。实验结果表明,所提方法比多元线性主成分分析(MPCA)方法故障识别的种类更多,可以有效地识别各类故障,对故障的整体检测率达到95%以上;比传统单层LSTM模型建模速度更快,且对故障的整体检测率提高了8个百分点以上,比较适合处理间歇过程中具有非线性、多工况等特征的故障检测问题。 相似文献
18.
Numerous fault detection and identification methods have been developed in recent years, whereas, each method works under its own assumption, which means a method works well in one condition may not provide a satisfactory performance in another condition. In this paper, we intend to design a fusion system by combining results of various methods. To increase the diversity among different methods, the resampling strategy is introduced as a data preprocessing step. A total of six conventionally used methods are selected for building the fusion system in this paper. Decisions generated from different models are combined together through the Dempster-Shafer evidence theory. Furthermore, to improve the computational efficiency and reliability of the fusion system, a new diversity measurement index named correlation coefficient is defined for model pruning in the fusion system. Fault detection and identification performances of the decision fusion system are evaluated through the Tennessee Eastman process. 相似文献