首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
碳-铝复合材料浸渍成型工艺探讨   总被引:4,自引:0,他引:4       下载免费PDF全文
本文采用碳铝复合丝液相浸渍成型方法制得复合材料试样.经高温处理后的复合材料显微组织用光学和扫描电子显微镜进行观察,用气相色谱分析了碳化物的生成量并用X射线衍射鉴定反应的产物.本文讨论碳-铝复合丝高温浸渍中的行为,在高温下碳纤维和铝发生了界面反应,反应形成了碳化铝脆性层.并且指出脆性层生成与成型工艺条件有关,温度越高,时间越长,反应就越明显,由此显见选择适当的成型工艺、合适的纤维种类和结构及适当的涂层对防止界面反应是十分重要的.  相似文献   

2.
在1060系铝基体表面镀镍碳纤维作为增强体,进行真空热压扩散制备出碳纤维/铝复层材料。研究了制备工艺参数(加热温度、保温时间、压力大小)和碳纤维体积分数对碳纤维/铝复层材料的微观组织、界面结合、性能强度和断口形貌的影响。结果表明:碳纤维与铝基体界面结合良好,镀镍层与铝基体在碳纤维附近反应生成的Al3Ni阻止了铝基体与碳纤维之间生成脆性相Al4C。随着碳纤维体积分数的提高,材料的抗弯强度先提高后降低。  相似文献   

3.
采用包套热挤压工艺制备了不同体积分数SiC颗粒增强的6066铝基复合材料,结合其断口形貌及微观组织,分析了材料的断裂机制及抗拉强度和屈服强度随SiC增强颗粒体积分数变化的规律.结果表明,材料的断裂机制为颗粒与基体间的界面脱粘以及SiC团聚体的脆性开裂.当SiC颗粒的体积分数小于12%时,随着SiC颗粒增强相的增加,SiCp/6066铝基复合材料的抗拉强度和屈服强度增加.当SiC颗粒的体积分数大于12%时,材料的强度增加减缓或略有下降,其主要强化机制是位错强化和弥散强化.  相似文献   

4.
冷拉拔铜包铝细丝的退火工艺与组织性能研究   总被引:2,自引:0,他引:2  
研究了冷拉拔铜包铝细丝合理的退火工艺及其对材料力学性能、铜包覆层组织及界面扩散层厚度的影响规律.结果表明:铜包铝细丝的最佳退火工艺为300℃×60min.低于200℃退火时,铜包铝细丝铜包覆层处于回复阶段,细丝强度从冷拉态的361MPa急剧下降到236MPa,延伸率略有降低;300℃退火后,铜包覆层的再结晶完成,细丝的抗拉强度下降至约152MPa,延伸率升到最高,达到16.3%;400℃退火后,铜包覆层晶粒显著长大,界面处生成脆性金属间化合物,延伸率急剧下降.界面扩散层的厚度随退火温度和保温时间的增加而增大,当退火温度低于300℃时,扩散层厚度随退火时间增加缓慢;当退火温度高于350℃后,扩散层厚度快速增大.延伸率随扩散层厚度的增加先升高后降低,当界面扩散层厚度为2μm时,铜包铝细丝的延伸率最高.  相似文献   

5.
细编穿刺C/C 复合材料不同层次界面特性研究   总被引:3,自引:1,他引:2       下载免费PDF全文
针对细编穿刺C/C 复合材料中单丝/碳基体和纤维束/碳基体不同层次界面结构特性, 分别设计、建立了表征这两个层次界面结合性能的原位顶出仪, 并将界面结合性能与C/C 复合材料层间剪切强度测试进行了比较。利用该原位技术, 研究了不同工艺参数条件下C/C 复合材料这两个层次界面结合性能的关系, 并讨论了它们对C/C 复合材料拉伸强度的影响。表明: 本文中所建立的单纤维和整束纤维顶出技术可用于定量表征C/C 复合材料的不同层次界面粘合性能。不同层次界面结合状态在一定程度上对材料宏观力学性能的影响是不同的。  相似文献   

6.
将铝铅合金带分别与热浸纯Al、Al-2%Si合金的钢板进行热轧复合。研究了元素硅、热浸时间、金属间化合物层厚度及缺口界面分数对结合强度的影响。结果表明,在复合过程中产生两种不同界面,铝铅合金与热浸铝钢板通过缺口界面和化合物界面而结合。总的结合强度主要取决于缺口界面强度的大小与分数的高低,而且与后者之间呈线性关系。硅对总结合强度的影响体现在:虽然对化合物界面强度的影响较小,但显著提高缺口界面强度,因而使总结合强度明显提高。在给定实验条件下,使热浸纯Al时的缺口界面强度从约为化合物界面强度的4倍提高到热浸Al-2%Si时的近6倍。  相似文献   

7.
不同层次界面对C/C复合材料断裂行为的影响   总被引:5,自引:0,他引:5  
采用快速化学液相气化渗透法制备了C/C复合材料;利用扫描电子显微镜观察了材料的断口形貌特征;研究了不同层次界面状态对C/C复合材料力学行为及断裂模式的影响. 研究表明:束内纤维与基体间结合要适度,既不能过强也不能过弱,保证材料具有高强度同时又具有一定塑韧性;当碳布层间或束间的基体热解碳与纤维柬表面之间残余孔隙量较多或者结合较弱时,则裂纹沿碳布层表面的纤维与基体热解碳之间扩展而分层;热解碳碳层面排列的越紧密,层面间的结合强度越高,则倾向于在基体热解碳内形成齐茬形断面;若碳层面之间存在过多间隙或结合较弱,则倾向于沿碳层面剥离而分层.  相似文献   

8.
为改善纤维与基体的润湿性,在碳纤维表面涂覆Ni、SiC-Ni。经铝液浸渗实验表明Ni涂层可以使纤维很好地分布于基体中。但Ni单涂层导致碳纤维损伤,Ni、SiC-Ni两状态下界面与基体中均产生大量脆性相,急剧降低复合材料的强度。   相似文献   

9.
短纤维增强金属基复合材料的多重损伤分析   总被引:1,自引:0,他引:1       下载免费PDF全文
用细观计算力学的方法分析了短纤维增强金属基复合材料(MMC)多重损伤的相互作用及对拉伸强度的影响。采用唯象的内聚力模型模拟界面的脱粘;G-T模型描述延性基体的损伤。在胞元模型的基础上研究了界面强度、纤维长径比等细观参数对材料损伤模式及强韧性的影响。研究表明,界面较弱时,损伤以界面脱粘为主,界面的强度决定了材料强度;当界面较强时,晶须将发生断裂,材料的最终强度由晶须的强度决定。不同界面强度条件下基体中损伤的分布不同。   相似文献   

10.
目的 基于Cohesive–GTN模型建立考虑了界面影响区的铜/铝复合板有限元损伤模型,研究铜/铝复合板塑性变形的损伤演化行为,精细化分析金属层状复合板的损伤机理。方法 采用拉伸试验机、显微硬度计、EDS能谱仪、扫描电镜等测试手段,结合试验模拟,将获取的参数输入ABAQUS有限元软件中并对模拟结果进行研究分析。结果 基于试验法确定了界面区的宽度约为3 μm,铜侧界面影响区宽度约为50 μm,铝侧界面影响区宽度约为100 μm。当塑性变形量逐步增加时,铜层材料较早发生损伤断裂,之后铝层进入集中失稳阶段,主裂纹贯穿铝层直至复合板材料整体发生断裂。此外,各异质层材料内部孔洞的体积分数不断增大,达到材料失效时的孔洞体积分数,材料发生损伤失效。结论 基于Cohesive–GTN模型建立考虑了界面影响区的铜/铝层状复合板有限元损伤模型,并结合试验验证了模型的合理性和可靠性。在考虑了界面影响区的基础上,研究了铜/铝复合板塑性变形损伤演化行为,揭示了铜/铝复合板塑性变形损伤机制,为后续金属复合板的损伤分析提供更为精细化的建模方法。  相似文献   

11.
This paper describes the interface engineering of three–dimensional (3D) Nextel™440 fiber-reinforced aluminosilicate composites fabricated by the sol–gel method with fugitive pyrolytic carbon (PyC) coatings. The coating thickness on the fiber strength, interfacial characteristics and there corresponding effects on mechanical properties of the composites were investigated. The study shows that the fiber strength was influenced by the coating thickness and optimized with the thickness of 0.15 μm. The composites with uncoated fibers showed brittle fracture behavior without fiber pullout because of strong interactions between the fiber and the matrix. However, higher strengths and pseudo-ductile fracture behaviors were obtained in the composites with PyC interphases, where different deflections and branches of propagating cracks and fiber pullout patterns were observed. Moreover, induced fugitive PyC interface conditions have great effects on the density, microstructure and mechanical properties of the resultant composites.  相似文献   

12.
采用真空热压法制备了金刚石体积分数为63%的金刚石/Cu-Ti复合材料,研究了基体中Ti含量对金刚石/Cu-Ti复合材料界面显微结构和热导率的影响。随着Ti含量的增加,金刚石/Cu-Ti复合材料热导率先增加后减小。当基体中Ti含量为1.1wt%时热导率最高,为511 W/(m·K)。Ti含量小于1.1wt%时,烧结过程中两相界面间生成的碳化物数量和面积随Ti含量的增加而增加,优化了界面结合,提高了界面结合强度,增加了界面传热通道数量,使金刚石/Cu-Ti复合材料导热性能提高。Ti含量的增加同时伴随着碳化物热阻增加和基体导热性能的恶化。过量的Ti元素使低导热性能的碳化物层厚度增加,碳化物层本身热阻增加,界面热导降低,金刚石/Cu-Ti复合材料导热性能下降。  相似文献   

13.
Crack deflection and penetration at the interface of multi-wall carbon nanotube/amorphous carbon composites were studied via molecular dynamics simulations. In-situ strength of double-wall nanotubes bridging a matrix crack was calculated under various interfacial conditions. The structure of the nanotube reinforcement -ideal multi-wall vs. multi-wall with interwall sp3 bonding - influences the interfacial sliding and crack penetration. When the nanotube/matrix interface is strong, matrix crack penetrates the outermost layer of nanotubes but it deflects within the nanotubes with certain sp3 interwall bond density, resulting in inner wall pullout. With increasing the sp3 interwall bond density, the fracture mode becomes brittle; the fracture energy decrease while the bridging strength increases and then decreases. Our results suggest that the outermost nanotube wall can serve as a sacrificial layer such that the interface may be designed by effectively putting it inside the nanotubes. Controlling the density of sp3 interwall bond within the multiwall carbon nanotube makes the transition from brittle to tough failure modes in the composites even when the matrix/nanotube interface is strong.  相似文献   

14.
连续碳化硅纤维(SiCf)由于具有比强度、比模量高,耐磨性、热稳定性好等性能优点,常作为增强体制备SiC纤维增强钛基复合材料。与钛合金基体相比,其具有密度更低、强度更高、疲劳蠕变性能大幅提升等优点,但横向性能却明显下降。因此,该类材料常被设计制作成单向增强性部件,广泛应用在航空航天等领域,如发动机的传动轴、整体叶环、盘类及风扇叶片等多种复合材料的结构件。碳化硅纤维增强钛基复合材料的性能主要由碳化硅纤维的性能、基体性能及纤维与基体之间的结合界面性能决定。目前批量生产的SiC纤维性能较差,界面结合状态与复合材料性能之间关系的研究开展较少,还不能为钛基复合材料构件设计提供足够的数据支持。因此,近年来研究者们主要从SiCf/Ti基复合材料力学行为的研究角度出发,探究不同基体及纤维类型、复合材料制备工艺方法、界面特性及产物对SiCf/Ti基复合材料界面结合力及破坏机制的影响,获得了大量有价值的数据,以期开发出成本低、产物稳定性好、可批量生产SiCf/Ti基复合材料的制造工艺方法。目前较为成熟的碳化硅纤维有英国DERA-Sigma公司提供的Sigma系列SiCf及美国Textron公司提供的SCS系列SiCf,后者强度最高达到6 200 MPa。SiCf/Ti基复合材料的制备工艺包括金属箔-纤维-金属箔工艺(FFF)、单层带工艺(MT)、基体-涂层纤维工艺(MCT)等,制备复合材料的工艺根据零部件的用途来定,FFF适用于制备板材等大尺寸构件,MCT适用于制备叶环、轴、管、叶片等复杂结构件。界面是增强体与基体之间的纽带和桥梁,界面结构设计、界面反应控制及反应产物均影响着界面的力学特性。在SiCf/Ti基复合材料的纤维和基体之间添加过渡层能够减缓它们之间的相互扩散及化学反应,过渡层选用反应层和惰性涂层组成的双层涂层较好。界面反应产物受涂层成分、基体组织、复合和热处理工艺、环境因素等的影响,增强纤维及基体性能、优选制备工艺、控制界面反应及产物有利于提高复合材料的力学性能。本文总结了连续SiC纤维(SiCf)增强钛基复合材料的应用研究现状,详述了SiCf/Ti基复合材料的钛合金基体材料、SiCf的种类及性能,SiCf与SiCf/Ti基复合材料的制备方法,分析了SiCf/Ti基复合材料界面结构设计及反应产物,阐明了界面力学特性与复合材料性能的关系,指出国内SiCf/Ti基复合材料发展的重点应放在高性能SiC纤维的研究与开发、界面层设计及界面与性能的关系以及复合材料分析检测手段三个方面,为SiCf/Ti基复合材料的制备及其今后的实际应用提供了参考。  相似文献   

15.
The interface structures and fracture behavior of the two-dimensional carbon/carbon composites by isothermal vapor infiltration have been investigated. The results show that the graphene layers exhibit long-range order in high/textured pyrocarbon matrix and are curved in about 5-nm interface region of the fiber/high-textured. Some globular nanoparticles are formed on the fiber surface and the high-textured layer about 10 nm exists in the interface of the fiber/low-textured. The graphene layers stacks are scrolled and folded in the medium-textured and they are waved together in the interface of the fiber/medium-textured. The pseudo-plastic fracture behavior of the two-dimensional carbon/carbon composites is resulted from the dominant high-textured matrix and a moderate interfacial bonding force. A strong adhesion of the fiber/low-textured and the thicker fiber increased by surrounding low-textured layer result in the increasing flexural strength. The single medium-textured and a very strong bonding force of the fiber/medium-textured lead to the brittle fracture behavior.  相似文献   

16.
碳化硅纤维增强碳化硅复合材料(SiC/SiC)是极具前景的高温结构材料。通过先驱体浸渍裂解(PIP)工艺分别制备了PyC界面和CNTs界面SiC/SiC复合材料, 对两种SiC/SiC复合材料的整体力学性能以及界面剪切强度等进行了测试表征, 并对材料中裂纹的产生与扩展进行了原位观测。结果表明, 两种界面SiC/SiC复合材料弯曲强度相近, 但PyC界面SiC/SiC复合材料的断裂韧性约为CNTs界面SiC/SiC复合材料的两倍。在PyC界面SiC/SiC复合材料中, 裂纹沿纤维-基体界面扩展, PyC涂层能够偏转或阻止裂纹, 材料呈现伪塑性断裂特征; 而在CNTs界面SiC/SiC复合材料中, 裂纹在扩展路径上遇到界面并不偏转, 初始裂纹最终发展为主裂纹, 材料呈现脆性断裂模式。  相似文献   

17.
界面上脆性反应区(界面相)中的多重开裂   总被引:1,自引:1,他引:0       下载免费PDF全文
在某些复合体系的金属基复合材料中,由于纤维与基体发生反应,从而在界面上形成一层较脆的界面相.在轴向拉伸外载作用下,界面层发生多重开裂损伤.开裂裂纹对复合材料强度的作用除了与裂纹的表征尺寸有关外,还应与裂纹间的间距(或裂纹密度)有关.本文应用复合材料的圆柱体模型和改进的剪切滞后理论,分析了界面层多重开裂的过程,以及界面层与纤维、界面层与基体间界面剪切强度、界面层弹性模量等参数与裂纹密度间的关系.   相似文献   

18.
研究了碳纳米管纤维的微观结构和拉伸性能,并进一步分析了其与环氧树脂形成界面剪切强度及微观结构。采用单丝断裂试验测试了碳纳米管纤维/环氧树脂复合材料体系的界面剪切强度,结合单丝断裂过程中的偏光显微镜照片、复合材料的拉曼谱图和断口扫描电镜照片,研究了碳纳米管纤维/环氧树脂复合材料界面的微观结构。结果表明: 碳纳米管纤维/环氧树脂复合材料的界面剪切强度约为14 MPa;在碳纳米管纤维和环氧树脂形成界面的过程中,环氧树脂可以浸渍纤维,形成具有一定厚度的复合相,这种浸渍过程和界面相的形成都有利于碳纳米管纤维与基体之间的连接。  相似文献   

19.
The bonding of solid steel plate to liquid Al was conducted using rapid solidification.The influence of thickness of FeAl compound layer at the interface on interfacial shear strength of bonding plate was studied.The results show that the relationship between thickness of Fe-Al compound layer and interfacial shear strength is S=30.4 8.51 h-0.51h^2 0.007h^3(where h is thickness of Fe-Al compound layer,S is interfacial shear strength).When thickness of Fe-Al compound layer is 10.7μm,the largest interfacial shear strength is 71.6MPa。  相似文献   

20.
《Composites Part A》1999,30(4):451-461
The mechanical interactions between the elastic fiber and cracked elastic coating layer and their influences on fiber strength for strong and weak interfaces were studied. In the case of a strong interface, the energy release rate for the propagation of the crack in the coating layer into fiber increases and, therefore, the fiber strength decreases with increasing elastic modulus and thickness of the coating layer. When multiple cracking occurs in the coating layer, the energy release rate becomes low because of the reduced crack-spacing, resulting in a higher strength of the fiber, the double and graded coatings reduce the energy release rate and, therefore, raise the fiber strength in comparison with that for a single coating with high elastic modulus if the material with low elastic modulus is used as the inner layer adjacent to the fiber. In the case of weak interface, when the critical energy release rate for the interfacial debonding is lower than 0.3 times the critical one for the crack propagation into fiber, the debonding occurs prior to the crack propagation, resulting in higher fiber strength than that for strong interface because of the blunting at crack-tip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号