首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As candidates of cathode materials for single-chamber solid oxide fuel cells, La0.8Sr0.2MnO3 (LSM) and La0.8Sr0.2Sc0.1Mn0.9O3 (LSSM) were synthesized by a combined EDTA-citrate complexing sol-gel process. The solid precursors of LSM and LSSM were calcined at 1000 and 1150 °C, respectively, to obtain products with similar specific surface area. LSSM was found to have higher activity for methane oxidization than LSM due to LSSM's higher catalytic activity for oxygen reduction. Single cells with these two cathodes initialized by ex situ reduction had similar peak power densities of around 220 mW cm−2 at 825 °C. The cell using the LSM cathode showed higher open-circuit-voltage (OCV) at corresponding temperatures due to its reduced activity for methane oxidation relative to LSSM. A negligible effect of methane and CO2 on the cathode performance was observed for both LSM and LSSM via electrochemical impedance spectroscopy analysis. The high phase stability of LSSM under reducing atmosphere allows a more convenient in situ reduction for fuel cell initiation. The resultant cell with LSSM cathode delivered a peak power density of ∼200 mW cm−2 at 825 °C, comparable to that from ex situ reduction.  相似文献   

2.
High-temperature X-ray diffraction has been used to investigate the phase stability of lanthanum strontium cobalt oxide (LSC) for a range of materials with the formula La1−xSrxCoO3−δ (x = 0.7, 0.4, and 0.2). The stability of LSC increases with La content in low oxygen partial pressures at high temperature. Oxygen vacancy ordering has been observed for all three compositions in either low oxygen pressure or under reducing gas, as evidenced by the formation of the brownmillerite phase. The crystal structure of the vacancy-ordered phase was determined using Rietveld analysis of synchrotron X-ray diffraction data. The decomposition products under low oxygen pressure and in reducing conditions have been identified and characterized, including the phase transition and thermal expansion of the primary decomposition products, LaSrCoO4 and LaSrCoO3.5.  相似文献   

3.
The composite cathode system is examined for suitability on a Ce0.9Gd0.1O2−δ electrolyte based solid oxide fuel cell at intermediate temperatures (500–700 °C). The cathode is characterized for electronic conductivity and area specific charge transfer resistance. This cathode system is chosen for its excellent thermal expansion match to the electrolyte, its relatively high conductivity (115 S cm−1 at 700 °C), and its low activation energy for oxygen reduction (99 kJ mol−1). It is found that the decrease of sintering temperature of the composite cathode system produces a significant decrease in charge transfer resistances to as low as 0.25 Ω cm2. The conductivity of the cathode systems is between 40 and 88 S cm−1 for open porosities of 30–40%.  相似文献   

4.
The layered GdBa0.5Sr0.5Co2O5+δ (GBSC) perovskite oxides are synthesized by Pechini method and investigated as a novel cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The single cell of NiO–SDC (Sm0.2Ce0.8O1.9)/SDC (20 μm)/GBSC (10 μm) is operated from 550 to 700 °C fed with humidified H2 as fuel and the static air as oxidant. An open circuit voltage of 0.8 V and a maximum power density of 725 mW cm−2 are achieved at 700 °C. The interfacial polarization resistance is as low as 0.88, 0.29, 0.13 and 0.05 Ω cm2 at 550, 600, 650 and 700 °C, respectively. The ratio of polarization resistance to total cell resistance decreases with the increase in the operating temperature, from 60% at 550 °C to 21% at 700 °C, respectively. The experimental results indicate that GBSC is a promising cathode material for IT-SOFCs.  相似文献   

5.
The layered SmBa0.5Sr0.5Co2O5+δ (SBSC) perovskite oxide is synthesized by the Pechini method and investigated as a novel cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). A laboratory-sized Sm0.2Ce0.8O1.9 (SDC)-based tri-layer cell of NiO–SDC/SDC/SBSC is operated from 500 to 700 °C fed with humidified H2 (3% H2O) as a fuel and the static ambient air as oxidant. A maximum power density of 1147 mW cm−2 is achieved at 700 °C. The interfacial polarization resistance is as low as 1.01, 0.38, 0.16, 0.06 and 0.03 Ω cm2 at 500, 550, 600, 650 and 700 °C, respectively. The experimental results indicate that SBSC is a very promising cathode material for IT-SOFCs.  相似文献   

6.
Thin films of La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) were deposited on (1 0 0) silicon and on GDC electrolyte substrates by rf-magnetron sputtering using a single-phase oxide target of LSCF. The conditions for sputtering were systematically studied to get dense and uniform films, including substrate temperature (23–600 °C) background pressure (1.2 × 10−2 to 3.0 × 10−2 mbar), power, and deposition time. Results indicate that to produce a dense, uniform, and crack-free LSCF film, the best substrate temperature is 23 °C and the argon pressure is 2.5 × 10−2 mbar. Further, the electrochemical properties of a dense LSCF film were also determined in a cell consisting of a dense LSCF film (as working electrode), a GDC electrolyte membrane, and a porous LSCF counter electrode. Successful fabrication of high quality (dense and uniform) LSCF films with control of thickness, morphology, and crystallinity is vital to fundamental studies of cathode materials for solid oxide fuel cells.  相似文献   

7.
La0.84Sr0.16MnO3−δ–Bi1.4Er0.6O3 (LSM–ESB) composite cathodes are fabricated by impregnating LSM electronic conducting matrix with the ion-conducting ESB for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The performance of LSM–ESB cathodes is investigated at temperatures below 750 °C by AC impedance spectroscopy. The ion-impregnation of ESB significantly enhances the electrocatalytic activity of the LSM electrodes for the oxygen reduction reactions, and the ion-impregnated LSM–ESB composite cathodes show excellent performance. At 750 °C, the value of the cathode polarization resistance (Rp) is only 0.11 Ω cm2 for an ion-impregnated LSM–ESB cathode, which also shows high stability during a period of 200 h. For the performance testing of single cells, the maximum power density is 0.74 W cm−2 at 700 °C for a cell with the LSM–ESB cathode. The results demonstrate the ion-impregnated LSM–ESB is one of the promising cathode materials for intermediate-temperature solid oxide fuel cells.  相似文献   

8.
A range of La0.75Sr0.25Cr0.5Mn0.5O3−δ (LSCM) powders is prepared by the carbonate coprecipitation method for use as anodes in solid oxide fuel cells. The supersaturation ratio (R = [(NH4)2CO3]/([La3+] + [Sr2+] + [Cr3+] + [Mn2+])) during the coprecipitation determines the relative compositions of La, Sr, Cr, and Mn. The composition of the precursor approaches the stoichiometric one at the supersaturation range of 4 ≤ R ≤ 12.5, whereas Sr and Mn components are deficient at R < 4 and excessive at R = 25. The fine and phase-pure LSCM powders are prepared by heat treatment at very low temperature (1000 °C) at R = 7.5 and 12.5. By contrast, the solid-state reaction requires a higher heat-treatment temperature (1400 °C). The catalytic activity of the LSCM electrodes is enhanced by using carbonate-derived powders to manipulate the electrode microstructures.  相似文献   

9.
A stable, easily sintered perovskite oxide BaCe0.5Zr0.3Y0.16Zn0.04O3−δ (BCZYZn) as an electrolyte for protonic ceramic membrane fuel cells (PCMFCs) with Ba0.5Sr0.5Zn0.2Fe0.8O3−δ (BSZF) perovskite cathode was investigated. The BCZYZn perovskite electrolyte synthesized by a modified Pechini method exhibited higher sinterability and reached 97.4% relative density at 1200 °C for 5 h in air, which is about 200 °C lower than that without Zn dopant. By fabricating thin membrane BCZYZn electrolyte (about 30 μm in thickness) on NiO–BCZYZn anode support, PCMFCs were assembled and tested by selecting stable BSZF perovskite cathode. An open-circuit potential of 1.00 V, a maximum power density of 236 mW cm−2, and a low polarization resistance of the electrodes of 0.17 Ω cm2 were achieved at 700 °C. This investigation indicated that proton conducting electrolyte BCZYZn with BSZF perovskite cathode is a promising material system for the next generation solid oxide fuel cells.  相似文献   

10.
Two metallic alloys, namely, Crofer22 APU and equivalent ZMG23 were investigated as possible interconnect materials in SOFC fuel cells. A La0.67Sr0.33MnO3La0.67Sr0.33MnO3 (LSM) thin film is coated on these materials using pulsed DC magnetron sputtering. The as-deposited film is amorphous but is transformed into perovskite structure after annealing at different temperatures and times. The coating and uncoated structures and surface morphologies are analyzed using X-ray diffraction (XRD), electron Probe Micro Analyzer (EPMA), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The result shows that the LSM thin film on Crofer22 APU is good for compaction and adhesion, but there are some stresses between the equivalent ZMG232 and the coating and then create some cracks on the coating. Thereby, the coefficients of thermal expansion (CTE) of the equivalent ZMG232 may be higher than the CTE of the LSM. The cross-section of equivalent ZMG232 did not allow diffusion of Cr element. Thus, coating by plasma-sputtering could prevent the growth of oxide and the diffusion of Cr element to avoid cathode poisoning and the decline of conductivity in SOFC at high temperature.  相似文献   

11.
The optimization of electrodes for solid oxide fuel cells (SOFCs) has been achieved via a wet impregnation method. Pure La0.75Sr0.25Cr0.5Mn0.5O3−δ (LSCrM) anodes are modified using Ni(NO3)2 and/or Ce(NO3)3/(Sm,Ce)(NO3)x solution. Several yttria-stabilized zirconia (YSZ) electrolyte-supported fuel cells are tested to clarify the contribution of Ni and/or CeO2 to the cell performance. For the cell using pure-LSCrM anodes, the maximum power density (Pmax) at 850 °C is 198 mW cm−2 when dry H2 and air are used as the fuel and oxidant, respectively. When H2 is changed to CH4, the value of Pmax is 32 mW cm−2. After 8.9 wt.% Ni and 5.8 wt.% CeO2 are introduced into the LSCrM anode, the cell exhibits increased values of Pmax 432, 681, 948 and 1135 mW cm−2 at 700, 750, 800 and 850 °C, respectively, with dry H2 as fuel and air as oxidant. When O2 at 50 mL min−1 is used as the oxidant, the value of Pmax increases to 1450 mW cm−2 at 850 °C. When dry CH4 is used as fuel and air as oxidant, the values of Pmax reach 95, 197, 421 and 645 mW cm−2 at 750, 800, 850 and 900 °C, respectively. The introduction of Ni greatly improves the performance of the LSCrM anode but does not cause any carbon deposit.  相似文献   

12.
Perovskite-type La0.8Sr0.2ScyMn1−yO3−δ oxides (LSSMy, y = 0.0–0.2) were synthesized and investigated as cathodes for solid-oxide fuel cells (SOFCs) containing a stabilized zirconia electrolyte. The introduction of Sc3+ into the B-site of La0.8Sr0.2MnO3−δ (LSM) led to a decrease in the oxides’ thermal expansion coefficients and electrical conductivities. Among the various LSSMy oxides tested, LSSM0.05 possessed the smallest area-specific cathodic polarization resistance, as a result of the suppressive effect of Sc3+ on surface SrO segregation and the optimization of the concentration of surface oxygen vacancies. At 850 °C, it was only 0.094 Ω cm2 after a current passage of 400 mA cm−2 for 30 min, significantly lower than that of LSM (0.25 Ω cm2). An anode-supported cell with a LSSM0.05 cathode demonstrated a peak power density of 1300 mW cm−2 at 850 °C. The corresponding value for the cell with LSM cathode was 450 mW cm−2 under the same conditions. The LSSM0.05 oxide may potentially be a good cathode material for IT-SOFCs containing doped zirconia electrolytes.  相似文献   

13.
Screen-printing technology was developed to fabricate Ce0.8Sm0.2O1.9 (SDC) electrolyte films onto porous NiO–SDC green anode substrates. After sintering at 1400 °C for 4 h, a gas-tight SDC film with a thickness of 12 μm was obtained. A novel cathode material of Ba0.5Sr0.5Co0.8Fe0.2O3−δ was subsequently applied onto the sintered SDC electrolyte film also by screen-printing and sintered at 970 °C for 3 h to get a single cell. A fuel cell of Ni–SDC/SDC (12 μm)/Ba0.5Sr0.5Co0.8Fe0.2O3−δ provides the maximum power densities of 1280, 1080, 670, 370, 180 and 73 mW cm−2 at 650, 600, 555, 505, 455 and 405 °C, respectively, using hydrogen as fuel and stationary air as oxidant. When dry methane was used as fuel, the maximum power densities are 876, 568, 346 and 114 mW cm−2 at 650, 600, 555 and 505 °C, respectively. The present fuel cell shows excellent performance at lowered temperatures.  相似文献   

14.
A series of cobalt-free and low cost BaCexFe1−xO3−δ (x = 0.15, 0.50, 0.85) materials are successful synthesized and used as the cathode materials for proton-conducting solid oxide fuel cells (SOFCs). The single cell, consisting of a BaZr0.1Ce0.7Y0.2O3−δ (BZCY7)-NiO anode substrate, a BZCY7 anode functional layer, a BZCY7 electrolyte membrane and a BaCexFe1−xO3−δ cathode layer, is assembled and tested from 600 to 700 °C with humidified hydrogen (3% H2O) as the fuel and the static air as the oxidant. Within all the cathode materials above, the cathode BaCe0.5Fe0.5O3−δ shows the highest cell performance which could obtain an open-circuit potential of 0.99 V and a maximum power density of 395 mW cm−2 at 700 °C. The results indicate that the Fe-doped barium cerates can be promising cathodes for proton-conducting SOFCs.  相似文献   

15.
The electrochemical performances of Nd0.6Sr0.4Co0.5Fe0.5O3−δ–Ag composite cathodes have been investigated in intermediate temperature solid oxide fuel cells. The Nd0.6Sr0.4Co0.5Fe0.5O3−δ–Ag cathodes prepared by ball milling followed by firing at 920 °C show the maximum performance (power density: 0.15 W cm−2 at 800 °C) at 3 wt.% Ag. On the other hand, the Nd0.6Sr0.4Co0.5Fe0.5O3−δ–Ag composite cathodes with 0.1 mg cm−2 (0.5 wt.%) Ag that were prepared by an impregnation of Ag into Nd0.6Sr0.4Co0.5Fe0.5O3−δ followed by firing at 700 °C (but the electrolyte–Nd0.6Sr0.4Co0.5Fe0.5O3−δ assembly was prepared first by firing at 1100 °C) exhibit much better performance (power density: 0.27 W cm−2 at 800 °C) than the composite cathodes prepared by ball milling, despite a much smaller amount of Ag due to a better dispersion and an enhanced adhesion. AC impedance analysis indicates that the Ag catalysts dispersed in the porous Nd0.6Sr0.4Co0.5Fe0.5O3−δ cathode reduce the ohmic and the polarization resistances due to an increased electronic conductivity and enhanced electrocatalytic activity.  相似文献   

16.
Cathode materials consisting of Pr1−xSrxCo0.8Fe0.2O3−δ (x = 0.2–0.6) were prepared by the sol–gel process for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The samples had an orthorhombic perovskite structure. The electrical conductivities were all higher than 279 S cm−1. The highest conductivity, 1040 S cm−1, was found at 300 °C for the composition x = 0.4. Symmetrical cathodes made of Pr0.6Sr0.4Co0.8Fe0.2O3−δ (PSCF)–Ce0.85Gd0.15O1.925 (50:50 by weight) composite powders were screen-printed on GDC electrolyte pellets. The area specific resistance value for the PSCF–GDC cathode was as low as 0.046 Ω cm2 at 800 °C. The maximum power densities of a cell using the PSCF–GDC cathode were 520 mW cm−2, 435 mW cm−2 and 303 mW cm−2 at 800 °C, 750 °C and 700 °C, respectively.  相似文献   

17.
The cathode is a key component in low temperature solid oxide fuel cells. In this study, composite cathode, 75 wt.% Sm0.5Sr0.5CoO3 (SSC) + 25 wt.% Sm0.2Ce0.8O1.9 (SDC), was applied on the cermet supported thin SDC electrolyte cell which was fabricated by tape casting, screen-printing, and co-firing. Single cells with the composite cathodes sintered at different temperatures were tested from 400 to 650 °C. The best cell performance, 0.75 W cm−2 peak power operating at 600 °C, was obtained from the 1050 °C sintered cathode. The measured thin SDC electrolyte resistance Rs was 0.128 Ω cm2 and total electrode polarization Rp(a + c) was only 0.102 Ω cm2 at 600 °C.  相似文献   

18.
Oscillation of open circuit potential (OCP) and potential is observed for the methane oxidation reaction on (La0.75Sr0.25)(Cr0.5Mn0.5)O3 (LSCM) and LSCM/YSZ composite electrodes of solid oxide fuel cells (SOFCs) in weakly humidified methane (i.e., 97%CH4/3%H2O). In dry methane (i.e., 100%CH4), the potential oscillation is reduced significantly. The oscillation behaviour of OCP is also found to be strongly related to the temperature, the microstructure of the composite electrode and the fuel composition. The results indicate that the potential oscillation is thermally activated and is most likely associated with the adsorbed oxygen species on the electrode surface.  相似文献   

19.
Bi0.5Sr0.5MnO3 (BSM), a manganite-based perovskite, has been investigated as a new cathode material for intermediate-temperature solid oxide fuel cells (SOFCs). The average thermal-expansion coefficient of BSM is 14 × 10−6 K−1, close to that of the typical electrolyte material. Its electrical conductivity is 82-200 S cm−1 over the temperature range of 600-800 °C, and the oxygen ionic conductivity is about 2.0 × 10−4 S cm−1 at 800 °C. Although the cathodic polarization behavior of BSM is similar to that of lanthanum strontium manganite (LSM), the interfacial polarization resistance of BSM is substantially lower than that of LSM. The cathode polarization resistance of BSM is only 0.4 Ω cm2 at 700 °C and it decreases to 0.17 Ω cm2 when SDC is added to form a BSM-SDC composite cathode. Peak power densities of single cells using a pure BSM cathode and a BSM-SDC composite electrode are 277 and 349 mW cm2 at 600 °C, respectively, which are much higher than those obtained with LSM-based cathode. The high electrochemical performance indicates that BSM can be a promising cathode material for intermediate-temperature SOFCs.  相似文献   

20.
Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) is a mixed conducting oxide that shows high oxygen permeability to perform as a ceramic membrane and high electrochemical activity for oxygen reduction to perform as a cathode of solid oxide fuel cells. Both performances are closely related to the bulk and surface properties of the BSCF oxide. In this study, the chemical bulk diffusion coefficient (Dchem) and chemical surface exchange coefficient (kchem) of BSCF at various temperatures and oxygen partial pressures are determined by an electrical conductivity relaxation (ECR) method. Both Dchem and kchem are found to be dependent on pO2 with positive effect. Ea of Dchem and kchem are respectively 111 ± 5 and 110 ± 6 kJ mol−1 between 600 and 800 °C. Oxygen-ion diffusion and tracer diffusion coefficients are estimated from Dchem and compared with the literature results. Ionic conductivities are further derived according to the Nernst-Einstein relation. The poisoning effect of CO2 on the performances of BSCF is further investigated by the ECR method in combination with oxygen temperature-programmed desorption technique. The presence of CO2 causes a substantial decrease in kchem, however, the surface kinetics can be recovered by performing re-calcination in an oxidative atmosphere at 900 °C, agreeing well with literature reports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号