首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactions of vanadium, niobium, and tantalum pentoxides with aluminum nitride have been studied using X-ray diffraction. At temperatures from 1000 to 1600°C, we have identified various V, Nb, and Ta nitrides. The composition of the niobium and tantalum nitrides depends on the reaction temperature. The tendency toward nitride formation becomes stronger in the order V2O5 < Ta2O5 < Nb2O5.  相似文献   

2.
The study of electrical conductivity of 30Li2O: (70 − x) B2O3: xV2O5 glass samples has been carried out. The results have been explained by dividing the temperature range into two regions. In region I, conductivity shows Arrhenius behaviour for all the samples. The conductivity increases with addition of V2O5. The results have been explained in the light of Anderson and Stuart Model. In region II, an anomalous enhancement in the conductivity is observed for all the samples up to certain temperature beyond which the conductivity decreases. The enhancement in the conductivity in the annealed glass sample has been attributed to nanocrystallization.  相似文献   

3.
A quantum-mechanical calculation of the relative stability, structural parameters, and vibrational frequencies of V2O3 molecule isomers for different spin states was carried out using the BPW91/6-311+G(d, p) method. It was shown that the isomer with the C s structure (nonplanar VOVO rectangle with an O atom attached to it) in the X 5 A″ electronic state possesses the maximum stability. The energy of the C 2v symmetry structure was higher than the lowest energy by just 23 cm−1. It definitely indicated the impossibility of usage of the harmonic model in order to calculate the thermodynamic functions of V2O3 (g). A model is proposed based on which the energy levels and vibrational sums of states for this type of motion were calculated for the C s C 2v C s transition coordinate. These data, as well as results obtained from quantum-mechanical calculations, were used to calculate the thermodynamic functions of V2O3 (g) in the temperature range of T = 100–6000 K. The calculations were performed with the five excited electronic states with energies from 1000 to 9000 cm−1 taken into account. A comparison with the data calculated in the “rigid rotator-harmonic oscillator” approximation was performed.  相似文献   

4.
V2O5 thin films were deposited by reactive DC-diode sputtering technique in a mixed atmosphere of O2/Ar gas at room temperature from a high purity target of 99.99% vanadium. For the investigation, the thickness of the films and the O2/Ar ratio during the sputtering process were the parameters. The sputtering rate of the V2O5 films dramatically decreases with increasing the O2/Ar ratio. By X-ray diffraction it was found that films sputtered with 1% O2/Ar ratio grow preferentially in two orientations: the 200 and the 001 orientation. The increase of the O2/Ar ratio enhances the growth preferentially in the c-axis (001) and strongly decreases the growth in the a-axis (200) direction. The scanning electron microscope pictures confirm these results. In the visible region the optical transmittance is increased with increasing the O2/Ar ratio in the sputter gas. Additionally, the optical band gap is slightly larger for the films sputtered with an O2/Ar ratio higher than 5%. Beyond a thickness of about 220 nm and an O2/Ar ratio of 10% the electrical sheet resistance of the films increases dramatically. During the insertion/extraction of hydrogen ions, the change in the optical transmission was investigated. The gasochromism of the V2O5 films was explained by use of the Infra Red (IR) measurements during the insertion/extraction of hydrogen ions.  相似文献   

5.
We have studied the optical absorption and luminescence spectra of 45Na2O · xNb2O5 · (55 − x)P2O5 glasses containing 5, 10, 20, 25, 30, and 35 mol % Nb2O5. The results indicate that the absorption band around 26000 cm−1, responsible for the yellow color of the glasses, is due to the [Nb(5+)--O] center and disappears upon secondary heat treatment. Heat treatment of europium-doped glasses increases the concentration of Eu3+ centers in an asymmetric environment, which is accompanied by an increase in luminescence efficiency. The reason for this is that the Eu3+ ions are located outside the niobate subsystem of the glass matrix. The europium in the glasses studied acts as a protector ion.  相似文献   

6.
7.
New solid solutions, Bi2?x?y Tm x Nb y O3+δ, with tetragonal and cubic structures have been synthesized in the Bi2O3-Tm2O3-Nb2O5 system, and their electrical conductivity has been measured at temperatures from 670 to 1020 K. The 1020-K conductivity of the tetragonal solid solution Bi1.8Tm0.15Nb0.05O3+δ is comparable to that of Bi1.75Tm0.25O3, the best conductor in the Bi2O3-Tm2O3 system.  相似文献   

8.
Glasses of the ternary system ZnO–Bi2O3–P2O5 were prepared and studied in two compositional series 50ZnO–xBi2O3–(50 − x)P2O5 and (50 − y)ZnO–yBi2O3–50P2O5. Two distinct glass-forming regions were found in the 50ZnO–xBi2O3–(50 − x)P2O5 glass series with x = 0–10 and 20–35 mol.% Bi2O3. All prepared Bi2O3-containing glasses reveal a high chemical durability. Small additions of Bi2O3 (∼5 mol.%) improve thermal stability of glasses. All glasses crystallize on heating within the temperature range of 505–583 °C. Structural studies by Raman and 31P MAS NMR spectroscopies showed the rapid depolymerisation of phosphate chains within the first region with x = 0–15 and the presence of isolated Q0 phosphate units within the second region with x = 20–35. Raman studies showed that bismuth is incorporated in the glass structure in BiO6 units and their vibrational bands were observed within the spectral region of 350–700 cm−1. The evolution of properties and the spectroscopic data are both in accordance with a network former effect of Bi2O3.  相似文献   

9.
The ac electrical properties of some lithium silicate glasses and glass-ceramics containing varying proportions of Y2O3 and/or Fe2O3 were measured to investigate their electronic hopping mechanism. There is a clear variation of these properties with composition. The obtained results were related to the concentration and role of Y2O3 and/or Fe2O3 in the lithium silicate glass structure. In crystalline solids the electrical properties data obtained were correlated to the type and content of the mineral phases formed as indicated by X-ray diffraction analysis (XRD). The conductivity, dielectric constant and dielectric loss of the studied glasses were studied using the frequency response in the interval 30 Hz–100 KHz and the effect of compositional changes on the measured properties was investigated. The measurements revealed that the electrical responses of the samples were different and complex. The addition of Y2O3 generally, decreased the ac conductivity, dielectric constant and dielectric losses of the lithium silicate glasses. The addition of Fe2O3 in Y2O3-containing glasses increases the conductivity, while, the dielectric constant and dielectric losses were found to be decreased. However, the addition of Fe2O3 instead of Y2O3 led to decrease the ac conductivity and increased their dielectric constant and dielectric losses. The obtained data were argued to the internal structure of the lithium silicate glass and the nature or role-played by weakness or rigidity of the structure of the sample. Lithium disilicate-Li2Si2O5, lithium metasilicate-Li2SiO3, two forms of yttrium silicate Y2Si2O7 & Y2SiO5, iron yttrium oxide-YFeO3, lithium iron silicate-LiFeSi2O6 and α-quartz phases were mostly developed in the crystallized glasses. The conductivity of the crystalline materials was found to be relatively lower than those of the glass. At low frequency, as the Y2O3 content increased the ac conductivity, dielectric constant and dielectric loss data of the glass-ceramics decreased. However, the addition of Fe2O3 to the Y2O3 containing glass-ceramic led to increase the conductivity. The addition of high content of Fe2O3 instead of Y2O3 in the glass ceramic led to increase the ac conductivity.  相似文献   

10.
A new glass system SnO–MgO–P2O5 with low viscosity has been developed by a melt-quenching method. Formation, thermal properties, and chemical durability of these glasses have been investigated. For a constant P2O5 concentration, the glass formation ability is enhanced with the increasing Sn/(Sn + Mg) ratio. The glasses exhibit low glass transition temperature (T g = 270–400 °C), low dilatometric softening temperature (T DS = 290–420 °C), and high thermal expansion coefficient (CTE = 110–160 × 10−7 K−1). With the increasing Sn/(Sn + Mg) ratio, T g and T DS decrease, and CTE increases. When Sn/(Sn + Mg) ratio is varied, the relationship between chemical durability and thermal properties of the present glasses is not consistent with what expected in general cases. It is noted that the glasses with 32–32.5 mol% P2O5 exhibit excellent chemical durability and tunable T g, T DS, and CTE (by varying Sn/(Sn + Mg) ratio).  相似文献   

11.
A scheme of substrate dependent self-organization of vanadium oxide has been used to create unique supercapacitor electrodes. In present work, thin films of V2O5 were prepared on different substrates by using well known spray pyrolysis technique.The sample depositions were carried out at 673 K, by spraying 0.05 M, 40 ml solution of ammonium metavanadate at the spray rate 10 ml/min. V2O5 thin films grown on aluminum (Al), copper (Cu) and stainless steel (SS) substrates shows porous valley and mountains, rough and dense morphology with overgrown agglomeration of nano grains. In electrochemical characterizations, by using standard electrode configurations, specific capacitance values were evaluated from cyclic voltammetry in 1 M KCl, these are 18.43, 1500.0, 439.60 and 250.58 F/g at 5 mV/s for the electrodes deposited on Al, Cu, SS substrates and two electrode cell respectively. Charge discharge behavior of the SS electrode and two electrode cell was observed using chronopotentiometry. This exhibits specific energy, specific power, and coulombic efficiency (η) 84.91 Wh/kg, 120.00 kW/kg and 89.51 % for SS electrode and 19.92 Wh/kg, 65.00 kW/kg and 99.90 % for two electrode cell respectively. Impedance study was carried out in the frequency range 1 mHz–1 MHz depicts less internal resistance of SS electrode ~2.69 Ω and two electrode cell ~3.04 Ω.  相似文献   

12.
Semiconducting glasses of the Fe2O3-Bi2O3-K2B4O7 system were prepared by the press-quenching method and their dc conductivity in the temperature range 223–393 K was measured. The glass transition temperature values (Tg) of the present glasses were larger than those of tellurite glasses. This indicates a higher thermal stability of the glass in the present system. The density for these glasses was consistent with the ionic size, atomic weight and amount of different elements in the glasses. Mössbauer results revealed that the relative fraction of Fe increases with increasing Fe2O3 content. Electrical conductivity showed a similar composition dependency as the fraction of Fe. The glasses had conductivities ranging from 10 to 10 Scm at temperatures from 223 to 393 K. Electrical conduction of the glasses was confirmed to be due to non-adiabatic small polaron hopping and the conduction was primarily determined by hopping carrier mobility.  相似文献   

13.
Elastic properties of Na2O-ZnO-ZnF2-B2O3 oxyfluoride glasses with different ZnF2 concentrations have been investigated using ultrasonic velocity measurements at room temperature, at a frequency of 10 MHz. Glasses prepared by melt quenching method were suitably polished for the ultrasonic velocity measurements using pulse-echo superposition method. Various elastic moduli have been calculated and their compositional dependence has been examined. The compositional dependence of elastic moduli with the concentration of ZnF2 shows decrease in the moduli initially, with further increase in ZnF2 the moduli sharply increases and then again tend to decrease when ZnF2 concentration is 20 mol%. The values of Poisson’s ratio lie in the range of 0·24–0·30, which is typical to covalent bonded network. The variation of θ D with ZnF2 indicates complex behaviour of the glass network. The results have been analysed in view of the modified borate glass network. Addition of ZnF2 into the pure glass seems to influence the borate network by replacement of B-O-B linkages with B-O-Zn.  相似文献   

14.
Polycrystalline sample of Ba5SmTi3V7O30 was prepared by a high-temperature solid-state reaction technique. Structural and microstructural characterizations were performed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). X-ray preliminary structural studies reveal that the material has orthorhombic structure at room temperature. Detailed electrical (dielectric and impedance) properties of the material studied by using a complex impedance spectroscopy (CIS) technique in a wide temperature range (33–450 °C) at different frequencies (102–106 Hz) reveal that the relative dielectric constant of the material increases with rise in temperature and thus bulk has a major contribution to its dielectric and electrical properties. The bulk resistance of the material decreases with rise in temperature exhibiting a typical negative temperature coefficient of resistance (NTCR) behavior. The nature of the temperature variation of conductivity and value of activation energy, suggest that the conduction process is of mixed-type (ionic–polaronic and space charge). The existence of ferroelectricity in the compound was confirmed from polarization study.  相似文献   

15.
Melt quenching technique was applied to study tendency for phase formation and amorphization in the MoO3–ZrO2–V2O5 system. By X-ray diffraction were detected the main crystalline phases separated during the quenching: Zr(MoO4)2, V2MoO8, (Mo0.3V0.7)2O5, V0.95Mo0.97O5 but in a wide concentration range the dominant crystalline phase was monoclinic ZrO2. The average particle sizes of the obtained crystal phases were in the range 30–50 nm. A narrow glass formation area was situated, near MoO3–V2O5 side. The glass-crystalline samples were obtained in the MoO3- and V2O5-rich compositions. The phase formation was proven by IR analysis also. IR data showed that the main structural units built up the glass network are corner shared VO5 and MoO6 groups while in the corresponding crystal V2MoO8 phase MeO6 (Me = V, Mo) octahedra are corner and edge shared (band at 580 cm−1).  相似文献   

16.
Vanadium oxide (V2O5) mixed titanium oxide (TiO2) and zirconium oxide (ZrO2) thin films were fabricated on glass substrates (corning 2947) and on indium tin oxide (ITO) coated glass substrates by sol gel spin coating process. Their optical, structural and electrochromic properties were investigated. The results were compared with pure TiO2 and ZrO2 thin films. Mixture of V2O5 with both types of film reduces the transmittance at the higher wavelengths. The refractive index of the V2O5 mixed TiO2 and ZrO2 films increases when compared with pure TiO2 and ZrO2 films. AFM images demonstrate no significant topographical changes for V2O5 mixed TiO2 whereas for V2O5 mixed ZrO2 films a topographical change is observed. V2O5 mixed TiO2 showed slight increase in their charge capacity.  相似文献   

17.
We have prepared europium-doped BaO-Bi2O3-B2O3 glasses and investigated the doping effect on the main physicochemical properties and local structure of the glasses. Using Judd-Ofelt analysis, we calculated intensity parameters (Ω2, Ω4, and Ω6), spontaneous emission probabilities, the radiative lifetime, luminescence branching factors, the quantum yield of luminescence, and the stimulated emission cross sections for 5 D 07 F J transitions.  相似文献   

18.
The electrical resistivity of Nb2O5-NiO materials was measured in the range 20-500°C. The resistivity of the samples was found to be sensitive to the presence of ammonia or sulfur dioxide in air. Some of the oxides in the Nb2O5-NiO system are potentially attractive as materials for temperature and gas sensors.  相似文献   

19.
The electrical properties of layered perovskite-like compounds with the general formula Bi m + 1Fe m − 3Ti3O3m + 3 have been studied in relation to their physicochemical properties and structure.  相似文献   

20.
We gave studied the crystallization behavior of 30BaO · 25Bi2O3 · 45B2O3 glasses doped with Eu2O3 to different levels. At a Eu2O3 content of 7 mol % or higher, the glasses undergo volume crystallization. The only precipitating phase is a solid solution between europium and bismuth oxides. With increasing europium concentration in the glass, the structure of the crystallites changes from cubic to rhombohedral. We have investigated the morphology, physicochemical properties, and luminescence spectra of the glasses and glass-ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号