首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The NO, NO/O2, and NO/O2/H2O adsorption on MnO2/NaY (5 and 15 wt.% MnO2) composite catalyst and NaY has been studied by means of in situ FTIR and EPR spectroscopy at elevated temperatures and during heating under reaction-like conditions. NO adsorption and co-adsorption of NO and O2 on NaY and MnO2/NaY proceeds via oxidation of NO forming NO2 and NO3 species. Whereas the manganese dioxide preferably acts as oxidising agent, the zeolite stores the NOx species as nitrite and nitrate ions in the solid. In the presence of oxygen, the nitrate formation is enhanced due to additional oxidation of NO through gaseous oxygen leading to NO2. Dimerisation of NO2 to N2O4 and following disproportionation of the latter causes the formation of NO+ and NO3 species which are associated with nucleophilic zeolitic oxygen and especially alkali cations of the zeolite, respectively. The presence of oxygen facilitates reoxidation of Mn2+ which keeps more Mn ions in the active state. Pre-adsorbed water and higher amounts of water vapour in the feed hinder the NO adsorption by blocking the adsorption sites and shift the nitrate formation to higher temperatures. The quantities and thermal stability of the nitrates formed during NO and NO/O2 adsorption differs which points to a different mechanism of nitrate formation. In the absence of gaseous oxygen, nitrates are formed by participation of only lattice oxygen. In the presence of oxygen, nitrate formation by dimerisation and disproportionation reactions of NO2 dominates. The manganese component of the composite catalyst supports the oxidation of NO to nitrite and subsequently to nitrate. During this process Mn4+ is reduced to Mn2+ as evidenced by in situ EPR measurements.  相似文献   

2.
The effect of oxygen concentration on the pulse and steady-state selective catalytic reduction (SCR) of NO with C3H6 over CuO/γ-Al2O3 has been studied by infrared spectroscopy (IR) coupled with mass spectroscopy studies. IR studies revealed that the pulse SCR occurred via (i) the oxidation of Cu0/Cu+ to Cu2+ by NO and O2, (ii) the co-adsorption of NO/NO2/O2 to produce Cu2+(NO3)2, and (iii) the reaction of Cu2+(NO3)2 with C3H6 to produce N2, CO2, and H2O. Increasing the O2/NO ratio from 25.0 to 83.4 promotes the formation of NO2 from gas phase oxidation of NO, resulting in a reactant mixture of NO/NO2/O2. This reactant mixture allows the formation of Cu2+(NO3)2 and its reaction with the C3H6 to occur at a higher rate with a higher selectivity toward N2 than the low O2/NO flow. Both the high and low O2/NO steady-state SCR reactions follow the same pathway, proceeding via adsorbed C3H7---NO2, C3H7---ONO, CH3COO, Cu0---CN, and Cu+---NCO intermediates toward N2, CO2, and H2O products. High O2 concentration in the high O2/NO SCR accelerates both the formation and destruction of adsorbates, resulting in their intensities similar to the low O2/NO SCR at 523–698 K. High O2 concentration in the reactant mixture resulted in a higher rate of destruction of the intermediates than low O2 concentration at temperatures above 723 K.  相似文献   

3.
The selective catalytic reduction (SCR) of nitrogen oxides (NOx) by propane in the presence of H2 on sol–gel prepared Ag/Al2O3 catalysts (0.5–5 wt.% Ag) was investigated. It was confirmed that hydrocarbon-assisted SCR of NOx is remarkably enhanced by co-feeding hydrogen to a lean exhaust gas mixture (λ>1), attaining considerable activity within a wide temperature window (470–825 K). The samples had marginal activity at 575 K without co-fed H2, but achieved up to 60% NOx conversion in the presence of H2 at a space velocity of 30,000 h−1. NO2 as NOx feed component is not converted to N2 by C3H8 to a substantial extent under lean conditions. This points to an activation route of NO through direct conversion to adsorbed nitrite/nitrate or to a dissociation of NO over Ag0, formed through short-term reduction by H2. The nature of Ag species was characterized by X-ray diffraction, temperature-programmed reduction, pulse thermoanalytical measurements, electron microscopy and FTIR spectroscopy. It could be shown that Ag2O nano-sized clusters are predominantly present on all samples, whereas formation of silver aluminate could not be confirmed. Nano-sized Ag2O clusters can reversibly be reduced/reoxidized by H2. A silver loading higher than 2 wt.% leads to a part of Ag2O particles, which are thermally decomposed during calcination at 800 K or higher. The catalytic role of this metallic silver is still unclear. Formal kinetic analysis of catalytic data revealed that the activation energy of the overall reaction is significantly lowered in the presence of H2. The presence of water does not change the activation energy. It is concluded that hydrogen reduces the nano-sized Ag2O clusters to Ag0 on a short-term scale. Zero-valent silver promotes a dissociation pathway of NOx conversion. The fact that more oxidized ad-species (nitrite/nitrate) are observed in the presence of H2 is attributed to a dissociative activation of gas-phase oxygen on Ag0.  相似文献   

4.
We have obtained mass spectra of negative ions produced by rays in artificial air at atmospheric pressure (N2: 80%, O2: 20%, H2O: 20–1500 ppm, CO2: 0.2–300 ppm, NO, NO2 0.02 ppm). We observed two main categories: hydrates built on simple ions (O2, O3, OH, CO3, CO4, HCO3, NO2, NO3), hydrates built on complex ions (NOx, HNOγ, HCO3HNOx, x = 2,3; Y = 2, 3). For high values of hygrometry, CO2 content and ageing time (5 msec) we observe the disappearance of O2, O3, OH hydrates whereas the major part of the spectrum consists of complex ions.  相似文献   

5.
Photocatalysis of a hollandite compound KxGaxSn8−xO16 (x = ca. 1.8) was examined for the reduction of nitrate ion with a reducing agent of methanol in water under UV irradiation. Hollandites have a characteristic one-dimensional tunnel structure. The hollandite powder, which was prepared by the sol–gel method and unloaded with any additives like metals, was used as the photocatalyst and its photocatalytic reaction was analyzed quantitatively by using ion chromatography and on-line mass spectrometry, and its reaction mechanism was analyzed by in-situ FT-IR. The hollandite photocatalyst showed a significant activity for the formation of N2 from NO3. The nitrate was reduced to N2 and NO2, while the reducing agent methanol was partly oxidized to change to formic acid. The conversion of NO3was proportional to the yields of N2, NO2, and HCOO. The present photocatalyzed decomposition of NO3 to N2 would be a useful photocatalysis for the environmental protection of water.  相似文献   

6.
The electrodeposition of metallic rhodium on pyrolytic graphite from 10 mM Na3RhCl6 + 0.5 M NaCl aqueous solution was studied by potentiostatic method with the use of a double-pulse technique involving nucleation and growth pulses. Physico-chemical properties of Rh deposits were investigated by electrochemical methods and scanning electron microscopy. The activity of Rh-modified graphite electrodes towards nitrate reduction in neutral medium was demonstrated, the activation energy of nitrate reduction and NO3 Langmuir adsorption constant on Rh deposits were determined.

The use of double-pulse technique resulted in enhanced surface coverage in comparison with usual potentiostatic deposition and in decreasing the mean particle size down to 30 nm, while the specific catalyst surface area attains 32 m2 g−1. The increase in the nucleation pulse duration from 20 to 100 ms enhances the mass catalytic activity towards NO3 reduction, which reaches 175 A g−1 for the best samples. Irrespectively of electrodeposition parameters, only NH3 and NO2 were detected as nitrate reduction products. The rate of NO3 destruction was equal to which is much higher than that of most of Pd/Cu-based nitrate hydrogenation systems and Ag/TiO2 photocatalysts.  相似文献   


7.
The sonochemical degradation rate of the charged substrates Acid Blue 40 (AB40) and methylene blue (MB) is enhanced by scavengers of hydroxyl radicals such as bicarbonate, carbonate, bromide, iodide and (only in the case of AB40) nitrite. No rate variation was observed with chloride, nitrate or sulphate, excluding a mere ionic strength effect. Oxidation of bicarbonate, carbonate, bromide, iodide and nitrite yields the corresponding radicals CO3, Br2, I2 and NO2, reactive but less than OH. Degradation enhancement can occur if these radicals are sonochemically formed on the surface of the collapsing cavitation bubbles and undergo there radical–radical recombination at a lesser extent than OH. In this way the radicals would be more available than OH for substrate degradation, both at the bubble surface and in the solution bulk, which could more than compensate for their lower intrinsic reactivity. The varied reactivity toward different substrates of the sonochemically formed radical species could then explain why nitrite inhibits MB degradation while enhancing that of AB40. The sonochemical formation of Br2, I2 and NO2 can give rise to halogenation and nitration in addition to oxidation processes. In fact bromo-, iodo- and nitrophenols were detected upon sonication of phenol in the presence of the corresponding anions, but only at quite elevated concentration values of nitrite, bromide or iodide (above 10 mM). Formation of harmful halogeno- and nitroderivatives could therefore take place on sonication of some wastewater rather than of typical natural waters.  相似文献   

8.
Combined effect of H2O and SO2 on V2O5/AC the activity of catalyst for selective catalytic reduction (SCR) of NO with NH3 at lower temperatures was studied. In the absence of SO2, H2O inhibits the catalytic activity, which may be attributed to competitive adsorption of H2O and reactants (NO and/or NH3). Although SO2 promotes the SCR activity of the V2O5/AC catalyst in the absence of H2O, it speeds the deactivation of the catalyst in the presence of H2O. The dual effect of SO2 is attributed to the SO42− formed on the catalyst surface, which stays as ammonium-sulfate salts on the catalyst surface. In the absence of H2O, a small amount of ammonium-sulfate salts deposits on the surface of the catalyst, which promote the SCR activity; in the presence of H2O, however, the deposition rate of ammonium-sulfate salts is much greater, which results in blocking of the catalyst pores and deactivates the catalyst. Decreasing V2O5 loading decreases the deactivation rate of the catalyst. The catalyst can be used stably at a space velocity of 9000 h−1 and temperature of 250 °C.  相似文献   

9.
Catalytic performance of Sn/Al2O3 catalysts prepared by impregnation (IM) and sol–gel (SG) method for selective catalytic reduction of NOx by propene under lean burn condition were investigated. The physical properties of catalyst were characterized by BET, XRD, XPS and TPD. The results showed that NO2 had higher reactivity than NO to nitrogen, the maximum NO conversion was 82% on the 5% Sn/Al2O3 (SG) catalyst, and the maximum NO2 conversion reached nearly 100% around 425 °C. Such a temperature of maximum NO conversion was in accordance with those of NOx desorption accompanied with O2 around 450 °C. The activity of NO reduction was enhanced remarkably by the presence of H2O and SO2 at low temperature, and the temperature window was also broadened in the presence of H2O and SO2, however the NOx desorption and NO conversion decreased sharply on the 300 ppm SO2 treated catalyst, the catalytic activity was inhibited by the presence of SO2 due to formation of sulfate species (SO42−) on the catalysts. The presence of oxygen played an essential role in NO reduction, and the activity of the 5% Sn/Al2O3 (SG) was not decreased in the presence of large oxygen.  相似文献   

10.
In this paper, the effect of CO2 and H2O on NOx storage and reduction over a Pt–Ba/γ-Al2O3 (1 wt.% Pt and 30 wt.% Ba) catalyst is shown. The experimental results reveal that in the presence of CO2 and H2O, NOx is stored on BaCO3 sites only. Moreover, H2O inhibits the NO oxidation capability of the catalyst and no NO2 formation is observed. Only 16% of the total barium is utilized in NO storage. The rich phase shows 95% selectivity towards N2 as well as complete regeneration of stored NO. In the presence of CO2, NO is oxidized into NO2 and more NOx is stored as in the presence of H2O, resulting in 30% barium utilization. Bulk barium sites are inactive in NOx trapping in the presence of CO2·NH3 formation is seen in the rich phase and the selectivity towards N2 is 83%. Ba(NO3)2 is always completely regenerated during the subsequent rich phase. In the absence of CO2 and H2O, both surface and bulk barium sites are active in NOx storage. As lean/rich cycling proceeds, the selectivity towards N2 in the rich phase decreases from 82% to 47% and the N balance for successive lean/rich cycles shows incomplete regeneration of the catalyst. This incomplete regeneration along with a 40% decrease in the Pt dispersion and BET surface area, explains the observed decrease in NOx storage.  相似文献   

11.
The adsorption of NO on the oxygen site of several metal oxide surfaces is discussed. It is shown that the strength of the interaction and the variation of the bond lengths are not always correlated to the electron transfer from NO to the surface atoms. In cases of irreducible metal oxides, NO22− may be strongly adsorbed. The formation of NO2 on reducible metal oxide is difficult unless terminal oxygen is present on the surface. Then, the reduction of the surface by transferring the unpaired electron from the NO to the surface appears in DFT calculations (VASP code).  相似文献   

12.
The reaction mechanism of the reduction of NO by propene over Pd-based catalysts was studied by FTIR spectroscopy. It was observed that the reaction between NO and propene most probably goes via isocyanate (2256–2230 cm−1), nitrate (1310–1250 cm−1) and acetate (1560 and 1460 cm−1) intermediates formation. Other possible intermediates such as partially oxidized hydrocarbons, NO2, and formates were also detected. The reaction between nitrates and acetates or carbonates reduced nitrates to N2 and oxidized carbon compounds to CO2. In situ DRIFT provides quick and rather easily elucidated data from adsorbed compounds and reaction intermediates on the catalyst surface. The activity experiments were carried out to find out the possible reaction mechanism and furthermore the kinetic equation for NO reduction by propene.  相似文献   

13.
Supporting Pt and Pd catalysts have been examined for the reduction of NO with H2 in the presence of oxygen and moisture. All catalysts showed a conversion maximum in the NO reduction at around 373 K. An additional conversion maximum was found to appear at around 573 K over several metal oxides supporting Pd, and Pd/TiO2 gave the highest conversion at around 573 K among the catalysts tested. In the reaction at 373 K, NO might be reduced directly by H2 both on Pt and Pd catalysts to give N2 and N2O. At the conversion maximum of the Pd/TiO2 catalyst at 575 K, however, in situ generated NO2 seems to react with H2.  相似文献   

14.
Selective catalytic reduction of NO with methane (CH4-SCR) in the presence of oxygen excess and water vapour was studied over two bimetallic cobalt/palladium-based FER catalysts, which differ on the order of introduction of metal ions. H2-TPR and UV–vis analysis showed that the simple change in the order of addition of metals to catalyst, gives rise to totally diverse species (Co2+ ions, Co oxides, Co-oxo cations and Pd species) both in type and quantity but also in location within zeolite framework. Experiments of TPD and TPSR of NO and NO2 provided important information to establish a relation between the various active sites formed on both catalysts and their function in the reaction mechanism. The importance of NO2 in the mechanism of NO reaction with CH4 and O2 was explored and the catalyst with a higher capacity to retain adsorbed NO2 is the less active for deNOx. The preparation of a bimetallic catalyst active for NO reduction must provide the proximity between Co and Pd species, and the presence of Co-oxo cations together with palladium species seem to be essential. Furthermore, a suitable amount of cobalt oxides must exist in order to originate NO2 that is the main reaction intermediate. Nevertheless, an excessive amount of these Co species can lead to an increase of adsorbed NO2, which reduces the rate of the reaction of some of the mechanism steps.  相似文献   

15.
The effect of different chemical parameters on photocatalytic inactivation of E. coli K12 is discussed. Illumination was produced by a solar lamp and suspended TiO2 P-25 Degussa was used as catalyst. Modifications of initial pH between 4.0 and 9.0 do not affect the inactivation rate in the absence or presence of the catalyst. Addition of H2O2 affects positively the E. coli inactivation rate of both photolytic (only light) and photocatalytic (light plus TiO2) disinfection processes. Addition of some inorganic ions (0.2 mmol/l) like HCO3, HPO42−, Cl, NO3 and SO42− to the suspension affects the sensitivity of bacteria to sunlight in the presence and in absence of TiO2. Addition of HCO3 and HPO42− resulted in a meaningful decrease in photocatalytic bactericidal effect while it was noted a weak influence of Cl, SO42− and NO3. The effect of counter ion (Na+ and K+) is not negligible and can modify the photocatalytic process as the anions. Bacteria inactivation was affected even at low concentrations (0.2 mmol/l) of SO42− and HCO3, but the same concentration does not affect the resorcinol photodegradation, suggesting that disinfection is more sensitive to the presence of natural anions than photocatalytic degradation of organic compounds. The presence of organic substances naturally present in water like dihydroxybenzenes isomers shows a negative effect on photocatalytic disinfection. The effect of a mixture of chemical substances on photocatalytic disinfection was also studied by adding to the bacterial suspension nutrient broth, phosphate buffer and tap water.  相似文献   

16.
Both NO decomposition and NO reduction by CH4 over 4%Sr/La2O3 in the absence and presence of O2 were examined between 773 and 973 K, and N2O decomposition was also studied. The presence of CH4 greatly increased the conversion of NO to N2 and this activity was further enhanced by co-fed O2. For example, at 773 K and 15 Torr NO the specific activities of NO decomposition, reduction by CH4 in the absence of O2, and reduction with 1% O2 in the feed were 8.3·10−4, 4.6·10−3, and 1.3·10−2 μmol N2/s m2, respectively. This oxygen-enhanced activity for NO reduction is attributed to the formation of methyl (and/or methylene) species on the oxide surface. NO decomposition on this catalyst occurred with an activation energy of 28 kcal/mol and the reaction order at 923 K with respect to NO was 1.1. The rate of N2 formation by decomposition was inhibited by O2 in the feed even though the reaction order in NO remained the same. The rate of NO reduction by CH4 continuously increased with temperature to 973 K with no bend-over in either the absence or the presence of O2 with equal activation energies of 26 kcal/mol. The addition of O2 increased the reaction order in CH4 at 923 K from 0.19 to 0.87, while it decreased the reaction order in NO from 0.73 to 0.55. The reaction order in O2 was 0.26 up to 0.5% O2 during which time the CH4 concentration was not decreased significantly. N2O decomposition occurs rapidly on this catalyst with a specific activity of 1.6·10−4 μmol N2/s m2 at 623 K and 1220 ppm N2O and an activation energy of 24 kcal/mol. The addition of CH4 inhibits this decomposition reaction. Finally, the use of either CO or H2 as the reductant (no O2) produced specific activities at 773 K that were almost 5 times greater than that with CH4 and gave activation energies of 21–26 kcal/mol, thus demonstrating the potential of using CO/H2 to reduce NO to N2 over these REO catalysts.  相似文献   

17.
Pdn+/Cen+/Na+/γ-Al2O3-type materials used as FCC additives for CO/NOx control were characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy and in situ FTIR. The EXAFS data indicate that in freshly prepared samples palladium is present in the form of highly dispersed PdO species. Reduction with H2 at 500 °C leads to the formation of small Pd clusters incorporating on average approximately six to eight metal atoms at a Pd−Pd bond distance of 2.76 Å. All components of these materials can interact with NO and promote the formation of nitrate/nitrite species, essentially “trapping” NOx species on the catalyst surface. However, the Na+ species dominate the surface chemistry and readily form sodium nitrates with a characteristic IR band at 1370–1385 cm−1. Finally, hydroxyls from the support are also actively participating in the formation of HNOx type compounds with characteristic stretching vibrations in the 3500–3572 cm−1 region.  相似文献   

18.
A series of La(Co, Mn, Fe)1−x(Cu, Pd)xO3 perovskites having high specific surface areas and nanosized crystal domains was prepared by reactive grinding. The solids were characterized by N2 adsorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), temperature programmed desorption (TPD) of O2, NO + O2, C3H6, in the absence or presence of 5% H2O, Fourier transform infrared (FTIR) spectroscopy, as well as activity tests towards NO reduction by propene under the conditions of 3000 ppm NO, 3000 ppm C3H6, 1% O2, 0 or 10% H2O, and 50,000 h−1 space velocity. The objective was to investigate the influence of H2O addition on catalytic behavior. A good performance (100% NO conversion, 77% N2 yield, and 90% C3H6 conversion) was achieved at 600 °C over LaFe0.8Cu0.2O3 under a dry feed stream. With the exposure of LaFe0.8Cu0.2O3 to a humid atmosphere containing 10% water vapor, the catalytic activity was slightly decreased yielding 91% NO conversion, 51% N2 yield, and 86% C3H6 conversion. A competitive adsorption between H2O vapor with O2 and NO molecules at anion vacancies over LaFe0.8Cu0.2O3 was found by means of TPD studies here. A deactivation mechanism was therefore proposed involving the occupation of available active sites by water vapor, resulting in an inhibition of catalytic activity in C3H6 + NO + O2 reaction. This H2O deactivation was also verified to be strictly reversible by removing steam from the feed.  相似文献   

19.
The role of La2O3 loading in Pd/Al2O3-La2O3 prepared by sol–gel on the catalytic properties in the NO reduction with H2 was studied. The catalysts were characterized by N2 physisorption, temperature-programmed reduction, differential thermal analysis, temperature-programmed oxidation and temperature-programmed desorption of NO.

The physicochemical properties of Pd catalysts as well as the catalytic activity and selectivity are modified by La2O3 inclusion. The selectivity depends on the NO/H2 molar ratio (GHSV = 72,000 h−1) and the extent of interaction between Pd and La2O3. At NO/H2 = 0.5, the catalysts show high N2 selectivity (60–75%) at temperatures lower than 250 °C. For NO/H2 = 1, the N2 selectivity is almost 100% mainly for high temperatures, and even in the presence of 10% H2O vapor. The high N2 selectivity indicates a high capability of the catalysts to dissociate NO upon adsorption. This property is attributed to the creation of new adsorption sites through the formation of a surface PdOx phase interacting with La2O3. The formation of this phase is favored by the spreading of PdO promoted by La2O3. DTA shows that the phase transformation takes place at temperatures of 280–350 °C, while TPO indicates that this phase transformation is related to the oxidation process of PdO: in the case of Pd/Al2O3 the O2 uptake is consistent with the oxidation of PdO to PdO2, and when La2O3 is present the O2 uptake exceeds that amount (1.5 times). La2O3 in Pd catalysts promotes also the oxidation of Pd and dissociative adsorption of NO mainly at low temperatures (<250 °C) favoring the formation of N2.  相似文献   


20.
The influence of ammonia and nitric oxide oxidation on the selective catalytic reduction (SCR) of NO by ammonia with copper/nickel and vanadium oxide catalysts, supported on titania or alumina have been investigated, paying special attention to N2O formation. In the SCR reaction, the VTi catalyst had a higher activity than VAl at low temperatures, while the CuNiAl catalyst had a higher activity than CuNiTi. A linear relationship between the reaction rate of ammonia oxidation and the initial reduction temperature of the catalysts obtained by H2-TPR showed that the formation rate of NH species in copper/nickel catalysts would be higher than in vanadia catalysts. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) showed that copper/nickel catalysts presented ammonia coordinated on Lewis acid sites, whereas ammonium ion adsorbed on Brønsted acid sites dominated on vanadia catalysts. The NO oxidation experiments revealed that copper/nickel catalysts had an increase of the NO2 and N2O concentrations with the temperature. NO could be adsorbed on copper/nickel catalysts and the NO2 intermediate species could play an important role in the reaction mechanism. It was suggested that the presence of adsorbed NO2 species could be related to the N2O formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号