首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 192 毫秒
1.
Although commercial selective surfaces are already available, investigation on different deposition methods and materials still goes on at many laboratories. In this work, ruthenium oxide films upon metallic substrates are assessed for this usage. Deposition of the films was made at room temperature by either spraying or dipping method in a ruthenium chloride alcoholic solution. After deposited on titanium substrates, the films were heat-treated at temperatures between 450 and 500 °C. When deposited on no-polished substrates, such films not only exhibit a high solar absorptance (α0.98), but also a high infrared emittance (ε0.8), which yield a low selectivity (S=α/ε=1.2). By deposition of similar films on polished substrates, absorptance decreases (α0.74), but emittance significantly decreases as well (ε0.12), resulting in a net selectivity increase (S6). On the other hand, evaporating a thin (20 nm) gold film upon the surface of a coating on a no-polished substrate also improves noticeably its emittance value (ε0.16) and a lower decrease in absorptance is achieved (α0.91), resulting in a selectivity increase (S5.7). These preliminary promising results indicate the high potential for using these films as solar selective coatings, but in order to optimize such selectivity values, further work to establish a close control on the deposition parameters and the substrate roughness value, should be done.  相似文献   

2.
A solid-state dye-sensitized photovoltaic cell consisting of vacuum deposited pentacene onto ruthenium dye-coated TiO2 electrode doped with iodine was fabricated. Cell delivers a short-circuit current of 3.6 mA cm−2 and an open-circuit voltage of 415 mV at 100 mW cm–2 (1.5 air mass). The efficiency and the fill factors of the above cell are 0.8% and 0.5%, respectively. Studies of the photocurrent action spectra showed that the dye is mainly responsible for this photocurrent generation. Preliminary results under extended illumination suggested that “long term” stability of the cell is promising.  相似文献   

3.
Highly conducting fluorine-doped cadmium oxide (CdO:F) thin films were deposited by sol–gel dip coating technique on glass and Si substrates. F concentration in the films was varied from 2.0% to 13.8% as determined from energy dispersive X-ray analysis. X-ray diffraction pattern showed that the films were polycrystalline in nature. The optimum F concentration for obtaining maximum conductivity was found to be 9.7%. The corresponding electrical conductivity was found to be 1.088×104 S/cm and mobility 60.41 V/cm2. Analysis of UV-VIS-NIR spectrum of the film with F concentration 9.7% showed a direct band gap energy of 2.3 eV.  相似文献   

4.
In the present investigation, the electrochromic properties of a fast protonic solid state device: NiOx/Ta2O5/WO3−x prepared at room temperature (300 K) is reported. The non-stoichiometric tungsten oxide thin film is prepared by reactive DC magnetron sputtering technique on ITO coated glass; the oxides of tantalum (300 nm) and nickel (100 nm) are prepared by electron beam evaporation. This proton device has a coloration efficiency of 82.4 cm2/C and coloration and bleaching time of 6 and 5 s, respectively, and a transmittance variation of 60%. The work function of WO3−x thin films by Kelvin probe in uncolored and colored states are 4.73 and 4.30 eV, respectively.  相似文献   

5.
Z.H. Lu  Q. Yao   《Solar Energy》2007,81(5):636-647
An optical model for arbitrary layers is developed and a one-dimensional steady-state thermal model is applied to analyze the energy balance of silicon solar cell modules. Experimental measurements show that simulations are in good agreement, with a maximum relative error of 8.43%. The wind speed vwind, ambient temperature Tamb and irradiance G are three main factors influencing the temperature of a photovoltaic panel. Over the course of a day the electrical output is reduced by the module temperature to only 32.5% of the rated value. Optical studies reveal that before 8:00 hours and after 16:00 hours, significant incident energy is lost by reflection because of the large angle of incidence θin, while at other times of day optical losses are nearly the same due to only small changes of transmission for θin < 45°. In addition, some optical losses result from the mismatched refractive indexes of encapsulating materials, especially at the ethylene-vinyl-acetate (EVA)/anti-reflection coating (ARC) and the ARC/Si interfaces. The uses of SiO2 and TiO2 as ARC materials for un-encapsulated and encapsulated Si solar cells are investigated by simulation. Comparing the results indicates that TiO2 as ARC reduces the reflective optical loss within λ = 0.4–1.1 μm after encapsulation, while SiO2 as ARC increases the loss by 5%. Energy allotment analysis shows that from 9:00 to 15:00, the reflective and transmissive optical losses are relatively steady at 26% and 13% of the incident energy, while the convective and radiative heat losses account for a further 30% and 24%, respectively. Thus, only 7% of incident energy is converted to electrical power.  相似文献   

6.
We describe the fabrication and performance of dye-sensitized photoanodes derived from TiO2 aerogel. Nanocrystalline titania aerogel is a bicontinuous, nanostructured pore–solid architecture featuring specific surface areas of 85–150 m2/g and a continuous mesoporous network, allowing chemisorption of high concentrations of sensitizing dye and rapid mass-transport of electron-transfer mediators. Considerable design and processing flexibility arises with aerogels because the continuous pore–solid networks are fixed by the supercritical drying process, allowing the creation of multifunctional, nanostructured films of single or multiple layers. Titania aerogels can be processed as powders and deposited as nearly opaque films from 2 μm to >35-μm thick while retaining their bicontinuous nanoscale networks. Two-layer, 30-μm-thick TiO2 aerogel films yield incident photon-to-electron conversion efficiency (IPCE) values of 85% in the 500–600 nm range and 52% at 700 nm with N719 as a sensitizing dye and after correcting for transmittance of the 3.2-mm-thick FTO-coated glass substrates at these wavelengths.  相似文献   

7.
Single-chamber solid oxide fuel cells with coplanar microelectrodes were operated in methane–air mixtures (Rmix = 2) at 700 °C. The performance of cells with one pair of NiO–YSZ (yttria stabilized zirconia) anode and (La0.8Sr0.2)0.98MnO3–YSZ cathode, arranged parallel on a YSZ electrolyte substrate, was found to be significantly dependent on the electrode width. For an interelectrode gap of 250 μm, cells with average electrode widths exceeding 850 μm could establish a stable open circuit voltage (OCV) of 0.8 V, while those with widths less than 550 μm could not establish any OCV. In the intermediate range, the cells exhibited significant fluctuations in voltage and power under our testing conditions. This behavior suggests that a lower limit to electrode dimensions exists for cells with single electrode pairs, below which neither a stable difference in oxygen partial pressure, nor an OCV, can be established. Conversely, increasing the electrode width imposes a penalty in the form of an increase in the cell resistance. However, both size limits can be circumvented by employing multiple pairs of microscale electrodes in an interdigitated configuration.  相似文献   

8.
The mesoporous porous-silicon (PS) layers were grown on 1 0 0, 1 1 0, and 1 1 1 oriented wafers at constant current density of 20 mA cm−2. The pore sizes and surface morphologies were measured by atomic force and scanning electron microscopes. The thickness x of the PS formed and the refractive index were measured by an ellipsometer as a function of time duration t (in min) of anodization. The x vs. t data were fitted into a power law x=atc where c is a dimensionless constant and growth kinetics was established. The growth is practically independent of orientation. This is due the reason that the growth rate is controlled largely by the availability of holes which exchange their charge with oxidizing species and desirably large concentrations of holes were available at current density of 20 mA cm−2. For a similar reason the growth of PS layer on the front surface of the n+ region of n+–p solar cells could also be done at current density of 20 mA cm−2 nearly at the same rate. A large concentration of holes could be injected from p region into the n+ region because the positive contact was made on the p side and thus the junction was forward biased. The PS ARC of thickness 70 nm showed increase 26% in the short circuit current density Jsc and 24% in efficiency of the cells. However, the improvement in the values of the open circuit voltage Voc were lower than the expected value indicating that the PS layers had enhanced recombination of minority carriers at the front surface or in the front emitter region immediately below the PS layer.  相似文献   

9.
We report on the synthesis and functional properties of nanoscale (50 nm) dense Y-doped zirconia (YDZ) electrolyte thin films by photon-assisted oxidation of Zr–Y precursor alloy thin films. Crystalline zirconia films with grain size of 5 nm were successfully grown at room temperature by oxidation under ultra-violet (UV) photon irradiation. Microstructure of the films was characterized by transmission electron microscopy. The electrochemical conductivity of UV grown YDZ electrolytes was investigated over a broad range of temperatures using Pt electrodes as a function of yttria doping concentration. The slightly lower electrical conductivity in UV grown films at intermediate temperature range (400–550 °C) is consistent with previous reports on oxygen defect annihilation under photo-excitation. Micro-fuel cells utilizing such ultra-thin YDZ membranes yielded 12 mW cm−2 power density at 550 °C. The results are of potential relevance in advancing low temperature ultra-thin oxide membrane synthesis for energy applications.  相似文献   

10.
In this paper the reverse current–voltage characteristics of a heterojunction based on spray deposited indium tin oxide (ITO) -p CdTe is presented. Particular reference is made to the study of the characteristics within the temperature intervals 120–370 K. It is established that, the reverse current–voltage characteristics have two distinct regions along the curves with the applied voltage having a strong power dependence on the reverse current at lower temperatures (Irev Um) . At higher temperatures however, the reverse current is directly proportional to the applied voltage (Irev U ). Also, a possible energy band diagram to explain the current flow mechanism suggested for the reverse current in the structure is presented.  相似文献   

11.
A conventional flatbed scanner equipped with an additional diffusor is used for rapid measurements of an important figure of merit for optical surfaces, the effective reflectivity of devices such as solar cells. The application of the technique to multicrystalline silicon wafers with light-trapping structures obtained by electrochemical etching is shown. The use of this method for rapid quality control in production environments as well as in the lab is envisaged: even with a non-optimized diffusor, a spatial resolution of 0.1×0.1 mm2 can be achieved, with an accuracy of the reflectivity measurements of 1% and data-acquisition times around 10 s per wafer.  相似文献   

12.
Hydrogenated nanocrystalline silicon (nc-Si:H) thin films were deposited from pure silane (SiH4) and hydrogen (H2) gas mixture by conventional plasma enhanced chemical vapour deposition (PE-CVD) method at low temperature (200 °C) using high rf power. The structural, optical and electrical properties of these films are carefully and systematically investigated as a function of hydrogen dilution of silane (R). Characterization of these films with low angle X-ray diffraction and Raman spectroscopy revealed that the crystallite size in the films tends to decrease and at same time the volume fraction of crystallites increases with increase in R. The Fourier transform infrared (FTIR) spectroscopic analysis showed at low values of R, the hydrogen is predominantly incorporated in the nc-Si:H films in the mono-hydrogen (SiH) bonding configuration. However, with increasing R the hydrogen bonding in nc-Si:H films shifts from mono-hydrogen (SiH) to di-hydrogen (SiH2) and (SiH2)n complexes. The hydrogen content in the nc-Si:H films decreases with increase in R and was found less than 10 at% over the entire studied range of R. On the other hand, the Tauc's optical band gap remains as high as 2 eV or much higher. The quantum size effect may responsible for higher band gap in nc-Si:H films. A correlation between electrical and structural properties has been found. For optimized deposition conditions, nc-Si:H films with crystallite size 7.67 nm having good degree of crystallinity (84% ) and high band gap (2.25 eV) were obtained with a low hydrogen content (6.5 at%). However, for these optimized conditions, the deposition rate was quite small (1.6 Å/s).  相似文献   

13.
Mechanics of thin-film transistors and solar cells on flexible substrates   总被引:1,自引:0,他引:1  
When devices are fabricated on thin foil substrates, any mismatch strain in the device structure makes the work piece curve. Any change of the radius of curvature produces a change in the size of the work piece, and thereby misalignment between individual device layers. To achieve tight tolerances, changes of curvature must be minimized throughout the fabrication process.Amorphous silicon thin-film transistors and solar cells respond differently to externally applied tensile strain. The elastic deformation of the transistor is correlated with small increase in the electron mobility. When the tensile strain reaches 0.34%, crack formation starts and causes an abrupt change in the transistor performance. The performance of solar cells, on the other hand, does not change for tensile strain up to 0.7%. At larger strain the short-circuit current, open-circuit voltage, fill factor, and the efficiency gradually decrease.  相似文献   

14.
The influence of varying relative humidity (RH55 and 75%) during thin film deposition from an oxalato-acetylated peroxotungstic acid sol by dip coating, on the microstructure and electrochromic properties of pristine tungsten oxide (WO3) films obtained upon annealing is presented. The films fabricated under a relative humidity of 55% are amorphous whereas the ones cast under a substantially humid atmosphere (RH75%) are characterized by interconnected nanocrystallites with a triclinic phase and a nanoporous surface morphology as well. Upon lithium insertion, larger integrated values of transmission modulation and coloration efficiency are observed over the photopic and solar regions, for the films prepared under a RH75% as compared to that observed for the films deposited under a RH of 55%. Functional improvements are due to the larger surface area of nanocrystallites and a porous microstructure, a consequence of a higher degree of hydration and hydroxylation in the former films in contrast to the non-porous and a rather featureless structure of the latter films. Faster switching kinetics between the clear and blue states, a greater current density for lithium intercalation, a higher diffusion coefficient for lithium and a superior cycling stability, again shown by the film fabricated under a 75% RH confirm that the WO3 film microstructure is most conducive for a more facile ion insertion–extraction process, which hints at its potential for electrochromic window applications.  相似文献   

15.
This paper presents a thermoeconomic analysis aimed at the optimization of a novel zero-CO2 and other emissions and high-efficiency power and refrigeration cogeneration system, COOLCEP-S (Patent pending), which uses the liquefied natural gas (LNG) coldness during its revaporization. It was predicted that at the turbine inlet temperature (TIT) of 900 °C, the energy efficiency of the COOLCEP-S system reaches 59%. The thermoeconomic analysis determines the specific cost, the cost of electricity, the system payback period and the total net revenue. The optimization started by performing a thermodynamic sensitivity analysis, which has shown that for a fixed TIT and pressure ratio, the pinch point temperature difference in the recuperator, ΔTp1, and that in the condenser, ΔTp2 are the most significant unconstrained variables to have a significant effect on the thermal performance of novel cycle. The payback period of this novel cycle (with fixed net power output of 20 MW and plant life of 40 years) was 5.9 years at most, and would be reduced to 3.1 years at most when there is a market for the refrigeration byproduct. The capital investment cost of the economically optimized plant is estimated to be about 1000 $/kWe, and the cost of electricity is estimated to be 0.34–0.37 CNY/kWh (0.04 $/kWh). These values are much lower than those of conventional coal power plants being installed at this time in China, which, in contrast to COOLCEP-S, do produce CO2 emissions at that.  相似文献   

16.
Transparent conducting Cd1−xSnxS thin films have been synthesized by radio frequency magnetron sputtering technique on glass and Si substrates for various tin concentrations in the films. X-ray diffraction studies showed broadening of peaks due to smaller crystal size of the Cd1−xSnxS films, and SEM micrographs showed fine particles with average size of 100 nm. Sn concentration in the films was varied from 0% to 12.6% as determined from energy-dispersive X-ray analysis. The room-temperature electrical conductivity was found to vary from 8.086 to 939.7 S cm−1 and corresponding activation energy varied from 0.226 to 0.076 eV. The optimum Sn concentration for obtaining maximum conductivity was found to be 9.3%. The corresponding electrical conductivity was found to be 939.7 S cm−1, and the mobility 49.7 cm2 V−1 s−1. Hall measurement showed very high carrier concentrations in the films lying in the range of 8.0218×1018–1.7225×1020 cm−3. The conducting Cd1−xSnxS thin films also showed good field emission properties with a turn on field 4.74–7.86 V μm−1 with variation of electrode distance 60–100 μm. UV–Vis–NIR spectrophotometric studies of the films showed not needed the optical band gap energy increased from 2.62 to 2.80 eV with increase of Sn concentration in the range 0–12.6%. The optical band gap was Burstein–Moss shifted, and the corresponding carrier concentration obtained from the shift also well matched with that obtained from Hall measurement.  相似文献   

17.
Thin films of Si nanocrystals (Si NCs) embedded in a silicon carbide (SiC) matrix (Si-NC:SiC) were prepared by alternating deposition of Si-rich silicon carbide (Si1−xCx) and near-stoichiometric SiC mutilayers (Si1−xCx/SiC) using magnetron cosputtering followed by a post-deposition anneal. Transmission electron microscopy and Raman spectroscopy revealed that the Si NCs were clearly established, with sizes in the range of 3–5 nm. Optical studies showed an increase in the optical band gap after annealing from 1.4 eV (as-deposited) to 2.0 eV (annealed at 1100 °C). P-type Si-NC:SiC/n-type crystalline silicon (c-Si) heterojunction (HJ) devices were fabricated and their electrical and photovoltaic properties were characterized. The diode showed a good rectification ratio of 1.0×104 at the bias voltage of ±1.0 V at 298 K. The diode ideality factor and junction built-in potential deduced from current–voltage and capacitance–voltage plots are 1.24 and 0.72 V, respectively. Illuminated I–V properties showed that the 1-sun open-circuit voltage, short-circuit current density and fill factor of a typical HJ solar cell were 463 mV, 19 mA/cm2 and 53%, respectively. The external quantum efficiency and internal quantum efficiency showed a higher blue response than that of a conventional c-Si homojunction solar cell. Factors limiting the cell's performance are discussed.  相似文献   

18.
Experimental investigations are performed on novel magnesium ion-conducting gel polymer electrolyte nanocomposites based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), dispersed with nanosized magnesium oxide (MgO) particles. The nanocomposite materials are in the form of free-standing films. Various physical and electrochemical analyses demonstrate promising characteristics of these films, suitable as electrolytes in rechargeable magnesium batteries. The optimized material with 3 wt.% MgO offers a maximum electrical conductivity of 8 × 10−3 S cm−1 at room temperature (25 °C) with good thermal and electrochemical stabilities. The ion/filler–polymer interactions and possible conformational changes in host polymer PVdF-HFP due to the liquid electrolyte entrapment and dispersion of nanosized MgO are examined by Fourier transform infrared (FTIR), X-ray diffraction (XRD) and scanning electron microscopic (SEM) methods. The Mg2+ ion conduction in the gel film is confirmed from the cyclic voltammetry, impedance spectroscopy and transport number measurements. The Mg2+ ion transport number (t+) is enhanced substantially and found to have a maximum of 0.44 for the addition of 10 wt.% MgO nanoparticles. The enhancement in t+ is explained on the basis of the formation of space-charge regions due to the presence of MgO:Mg2+-like species, that supports Mg2+ ion motion.  相似文献   

19.
Heat transfer enhancement of natural convection inside the inclined solar chimneys is investigated using electrohydrodynamic technique. The interactions between electric field, flow field, and temperature field are analyzed. The ranges of parameters considered are 104Ra107, 7.5 kVV017.5 kV, 30°θ120°, and 2aspect ratio14. Flow and heat transfer enhancements are significantly influenced at low Rayleigh number. The optimum inclined angle which obtains maximum volume flow rate and heat transfer is found to be at θ=60°. A maximum volume flow rate enhancement is expressed in relation with the number of electrodes. The relation between aspect ratio of chimney and number of electrodes that performs the optimum condition between efficiency and economy is analyzed incorporating with all concerning parameters.  相似文献   

20.
Nanocrystalline Ce0.8Gd0.2O1.9 (GDC20) powder was synthesized by ammonia co-precipitation combined with supercritical ethanol drying route, followed by characterizations with TG/DSC, XRD, BET, HR-TEM, and FESEM techniques. After calcination at 600 °C, the powder has a high specific surface area of 146.5 m2 g−1 and an average crystal size of 5 nm without hard-agglomeration. The nano-GDC powder showed excellent sinterability, where by pressureless sintering at 900 °C for 4 h, the relative density of more than 98% and average grain size of 84 nm have been attained, which is attributed to the powder's ultrafine nanocrystal size, weak agglomeration and high homogeneity. Investigations indicate that in the initial sintering stage, grain growth behavior is mainly controlled by volume diffusion mechanism with an activation energy of 5.4 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号