首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
目的采用Gleeble-3500热模拟实验机,研究TA15钛合金在变形温度为900~1050℃、应变速率为0.01~1 s-1条件下的热压缩流变行为及变形组织。方法采用一种简单有效的方法修正了TA15钛合金热压缩实验中摩擦引起的误差;计算出了TA15钛合金的应力指数和热变形激活能,建立了含有Z参数的双曲正弦函数形式本构方程;基于Murty准则,建立了其加工图。结果TA15钛合金的热压缩流变行为可采用含有Z参数的双曲正弦函数形式本构方程来描述,其平均变形激活能为625.884 kJ/mol;通过分析热加工图,确定了最优热变形工艺参数为:T=950℃,ε=0.01 s-1。结论研究结果可为TA15钛合金的塑性变形数值模拟提供基础,对合理制定热加工工艺具有重要指导意义。  相似文献   

2.
目的 研究紧固件用冷拔态GH4738合金棒材在不同工艺参数下的热变形行为,为紧固件热加工工艺参数优化提供理论指导。方法 采用Gleeble-3500热模拟实验机对冷拔态GH4738合金棒材在变形温度1 000~1 080 ℃、应变速率1~10 s−1条件下进行了热压缩实验,变形量为50%。计算了该合金的材料常数和变形激活能Q,建立了基于峰值应力的冷拔态GH4738合金的本构方程,根据动态材料模型理论绘制了冷拔态GH4738合金的能量耗散图和失稳图,获得了合金在不同应变下的热加工图,并讨论了显微组织演变情况。结果 冷拔态GH4738合金的流变应力随着变形温度的增加或应变速率的减小而降低。线性回归的相关系数证实了描述该材料热变形行为的本构方程的准确性。基于冷拔态GH4738合金的热加工图及显微组织验证结果可得,冷拔态GH4738合金的主要失稳区工艺参数区间为1 000~1 035℃/0.12~3 s−1,1 030~1 072℃/ 0.25~10 s−1和1 075~1 080 ℃/2.72~10 s−1。热加工较佳工艺条件为1 000~1 028 ℃/0.02~0.14 s−1和1 040~1 080 ℃/ 0.06~0.74 s−1。结论 通过对冷拔态GH4738合金热变形本构方程和热加工图进行研究,获得了冷拔态GH4738合金优化的热变形工艺参数,可用于指导冷拔态GH4738合金的紧固件热加工成形。  相似文献   

3.
目的 研究锻态GH4169合金的热变形行为,获得优化的热加工参数。方法 采用Gleeble 3500热模拟实验机对锻态GH4169合金进行不同工艺参数的热压缩实验,建立锻态GH4169合金的热变形本构方程,分析流变应力与热加工参数之间的关系。根据获得的流变应力–应变曲线建立锻态GH4169合金的热加工图。采用金相显微镜观察锻态GH4169合金变形后的显微组织。结果 锻态GH4169合金的应力随变形温度的增加和应变速率的降低而降低。基于锻态GH4169合金的热加工图可知,锻态GH4169合金可热加工的区域分别为987~1 027℃/0.026~0.01 s-1和1 070~1 100℃/0.026~0.01 s-1,最优热加工参数分别为1 000℃/0.01 s-1和1100℃/0.01s-1。通过金相组织结果分析可知,锻态GH4169合金无论在低温高应变速率条件下,还是在高温低应变速率条件下都发生了再结晶。对于热加工图中的流变失稳区,合金的动态再结晶主要与变形热有关。对于热加工图中可热加工的区域,合...  相似文献   

4.
目的 确定AlFeCoNiMo0.2高熵合金的热加工工艺参数,为该合金热挤压工艺的制定及优化提供有效依据.方法 采用Gleeble-3800热模拟试验机,在变形温度为900~1150℃,应变速率为0.001~1 s-1,真应变量为0.6的条件下对AlFeCoNiMo0.2高熵合金进行热压缩实验.基于Arrhennius模型对热压缩实验数据进行拟合,建立AlFeCoNiMo0.2高熵合金的Arrhennius本构方程,并绘制AlFeCoNiMo0.2高熵合金在不同真应变下的热加工图.结果 AlFeCoNiMo0.2高熵合金的流变应力值与应变速率呈正相关,与变形温度呈负相关;Arrhennius热变形本构方程的平均相对误差为3.97%;该合金热加工图中的流变失稳区分别为900~1120℃/0.1~1 s-1和1120~1150℃/0.2~1 s-1;热加工安全区为1075~1150℃/0.001~0.01 s-1;最佳热加工工艺参数为:1090~1125℃/0.001~0.002 s-1.结论 AlFeCoNiMo0.2高熵合金的热变形过程为加工硬化和动态再结晶为主的动态软化,建立的Arrhennius本构方程可较好地描述该合金的热变形行为,绘制的热加工图可为该合金热挤压工艺的制定及优化提供有效指导.  相似文献   

5.
采用Gleeble-3500热模拟试验机对挤压态AZ40合金进行热压缩实验,分析压缩后不同温度真应力-应变曲线的变化趋势,得到流变应力受变形温度和应变速率等因素的影响规律;在双曲正弦关系的基础上构造挤压态AZ40合金的本构方程,在动态材料模型(DMM)基础上建立挤压态AZ40合金的热加工图,从而确定挤压态AZ40镁合金的热变形加工范围.结果表明:明显的动态再结晶是挤压态AZ40镁合金流变曲线的特点,在压缩过程中,随变形温度的升高,挤压态AZ40镁合金的峰值应力减小;随应变速率升高,挤压态AZ40镁合金的峰值应力增大.当变形温度相同时,动态再结晶晶粒比例随着应变速率的升高而降低;当应变速率相同时,动态再结晶晶粒大小随着变形温度的升高而增大.粗大的未再结晶晶粒有明显的<1010>‖ND和<21-1-0>‖ND两种取向,而再结晶晶粒取向随机;通过热加工图及组织分析,确定了最佳的加工工艺为T=573 K,ε·=0.1 s-1.  相似文献   

6.
7050铝合金热压缩变形的流变应力本构方程   总被引:10,自引:0,他引:10  
对7050铝合金在应变速率为0.01~10s-1、变形温度为250~450℃条件下的流变应力行为进行了实验研究.结果表明:7050铝合金热压缩变形中发生了明显的动态回复与动态再结晶,流变应力随应变速率的增加而增加,随温度的增加而降低;通过线性回归分析计算出7050材料的应变硬化指数n以及变形激活能Q,获得了7050铝合金高温条件下的流变应力本构方程.  相似文献   

7.
目的 建立近β钛合金Ti−6Mo−5V−3Al−2Fe−2Zr(质量分数)的热变形本构方程,绘制热加工图,确定该合金的流变失稳区和适宜加工区,为其在工业生产中热加工工艺参数的制定提供指导。方法 在变形温度700~ 850 ℃、应变速率0.000 5~0.5 s−1、真应变0.7的条件下,对近β钛合金Ti−6Mo−5V−3Al−2Fe−2Zr进行热压缩实验;基于Arrhenius方程建立该合金的热变形本构方程,并对方程进行验证;根据Prasad失稳准则,构建该合金的热加工图。结果 该合金的流变应力随着变形温度的升高而减小,随着应变速率的增大而增大;其热变形激活能为226.29 kJ/mol,本构方程为;通过热变形本构方程得到的峰值应力计算值与实验值平均误差为4.21%。结论 建立的热变形本构方程预测了流变应力,描述了该合金的热变形行为;通过叠加合金的能量耗散图和流变失稳图,获得了该合金的热加工图。基于热加工图确定该合金的流变失稳区为变形温度700~755 ℃与784~850 ℃、应变速率0.5~0.05 s−1,最佳加工区为变形温度836~850 ℃、应变速率0.000 5~0.005 s−1。  相似文献   

8.
7085铝合金热压缩变形的流变应力本构方程   总被引:1,自引:0,他引:1  
采用Gleebe-1500热模拟机对7085铝合金进行热压缩,研究了该合金在应变速率为1~38s-1、变形温度为260~440℃条件下的流变应力行为.结果表明,7085铝合金流变应力在变形初期随着应变的增加而增大,出现峰值后逐渐趋于平稳;峰值应力随应变速率的增加而增加,随温度的升高而降低;通过线性回归分析计算出7085材料的应变硬化指数n以及变形激活能Q,获得了7085铝合金高温条件下的流变应力本构方程.  相似文献   

9.
目的研究镁合金热变形行为,建立真实应力与应变、温度及应变速率间的构效关系,以表征多类镁合金的热变形过程。方法基于Gleeble-1500热模拟实验,定性、定量化分析镁合金热变形的温度敏感性,结合变形曲线的唯象特征,优化并重构Fields-Backofen本构方程以表征镁合金的热变形行为。结果镁合金热变形过程中,应力关于温度的软化作用可被描述为以e为底的指数函数形式;采用F-B方程表征镁合金热变形行为时,需考虑温度软化作用对该方程进行特定优化;优化后的F-B模型,其形式上为分段式函数,该函数所预测的变形曲线在峰值处存在尖点现象且预测误差较大;利用"离散变形微阶段求解——全阶段整合"的方法,将应变变量植入到应变速率及温度敏感系数,对F-B模型进行重构,可有效解决尖点问题,提高对变形曲线的预测精度。结论重构后的F-B模型可准确表征AZ31B镁合金的塑性流变行为,并适用于AZ91,AZ80及ZK60等具有与研究合金相似变形特性的镁合金。  相似文献   

10.
工业纯钛(TA1)表面塑性剪切抗力较低且氧化膜保护作用有限,在滑动摩擦时会产生严重的磨损行为。经高温氧化处理的TA1圆盘试样通过高温摩擦磨损试验机以及扫描电镜(SEM)和能谱(EDS)分析,研究实验温度、氧化膜及富氧α层对TA1摩擦磨损行为的影响规律。结果表明,由于磨屑的润滑作用,在相同的载荷和磨损时间下,有氧化层TA1的摩擦因数范围在0.07~0.3,无氧化层TA1摩擦因数范围在0.55~0.9之间。摩擦磨损实验温度越高,有氧化层的TA1摩擦处的犁沟形貌分布越多、越深。对于无氧化层TA1试样,随温度升高和对磨时间的延长,裂纹更易扩展形成剥层磨损。TA1材料的主要磨损方式为剥层磨损、黏着磨损以及氧化磨损,无氧化膜及富氧α层的TA1材料黏着磨损更为严重。表面硬度和磨损机制不同造成高温下摩擦磨损性能的差异。  相似文献   

11.
12.
使用Gleeble-3800热模拟试验机对TA5钛合金进行等温恒应变速率压缩,研究其在变形温度为850~1050℃、应变速率为0.001~10 s-1和最大变形量为60%条件下的高温热变形行为;建立了引入物理参量的应变补偿本构模型,并根据DMM模型得到了加工图。结果表明:TA5钛合金为正应变速率敏感性和负变形温度相关性材料;考虑物理参量的应变补偿本构模型具有较高的预测精度,其相关系数R为0.99,平均相对误差AARE为8.95%。分析加工图和观察微观组织,发现失稳区域(850~990℃,0.05~10 s-1)的主要变形机制为局部流动;稳定区域(870~990℃,0.005~0.05 s-1)的主要变形机制为动态回复和动态再结晶。TA5钛合金的最佳热加工工艺参数范围为870~990℃和0.005~0.05 s-1。  相似文献   

13.
目的 研究铸态合金Mg?2Sc?2Y?0.5Zr合金热压缩行为及热加工图,根据合金的用途和再结晶程度,确定最佳热加工艺参数,为合金后续变形提供参考。方法 通过实验设计合金成分,称取一定质量的纯镁锭和二元中间合金,在真空熔炼炉中加热至760 ℃,保温至熔化,搅拌,静止,然后在钢磨具中空冷,得到合金锭。实际成分通过电感耦合等离子体原子发射光谱法测定;切取合适大小的铸锭进行X射线衍射实验。用于热压缩的铸态样品为圆柱形试样(?10 mm×15 mm) ,在进行热压缩实验前,对所有样品表面进行抛光。使用Gleeble?3800热压缩模拟试验机对铸态Mg?2Sc?2Y?0.5Zr合金进行热压缩试验,变形温度为573~723 K,应变速率为0.001~1 s?1。经热压缩后将各试样立即进行水淬,以保持压缩变形组织。将压缩样品沿着纵轴切割压缩样品,然后抛光、蚀刻,并使用扫描显微镜进行检查,以观察微观结构的演变,计算该合金的变形激活能,并构建合金高温变形的本构方程,建立真应变为0.5时的热加工图。结果 得到了铸态Mg?2Sc?2Y?0.5Zr合金热变形本构方程及真应变为0.5时的热加工图,合金热变形发生了动态回复和动态再结晶,合金的热变形激活能Q为198.58 kJ/mol。结论 根据用途和再结晶程度,铸态Mg?2Sc?2Y?0.5Zr合金的最佳加工参数为变形温度623~673 K、应变速率0.001~0.01 s?1,以及变形温度723 K、应变速率0.001~1 s?1。  相似文献   

14.
目的 研究A100钢的热变形行为,确定热加工范围并优化工艺参数.方法 使用Gleeble-3800热模拟实验机,对A100钢进行应变为0.6,变形温度为1073~1473 K,应变速率为0.01~10 s–1的等温热压缩实验.利用A100钢的热压缩实验数据,建立在不同变形温度、不同应变速率下的真应力-真应变曲线.建立A100钢基于唯象的本构模型与基于物理的本构模型以及基于Murty失稳准则的热加工图.结果 当应变速率一定,温度升高或一定,应变速率下降时,A100钢的流变应力会减小,流变应力曲线上主要表现为动态再结晶的软化机制.结论 构建的基于唯象的本构方程可以对A100钢在应变为0.6时的流变应力进行较好的预测,基于物理的本构方程可以反映出A100钢的物理特性,通过构建的基于Murty失稳准则的加工图可以得到A100钢的加工范围是温度为1173~1223 K,应变速率为0.01~0.1 s–1和温度为1323~1373 K,应变速率为0.05~0.15 s–1时.  相似文献   

15.
目的 研究2195铝锂合金在实验温度360~510 ℃、应变速率0.01~10 s−1条件下的热压缩变形行为,建立其本构模型及热加工图,获取该合金的安全加工工艺参数。方法 采用Gleeble−3500热模拟试验机进行热变形实验,分析合金的流变行为及热加工图,结合微观组织阐述其热变形机理,并对所得最优参数进行热挤压实验验证。结果 2195铝锂合金的流变应力随变形温度增加而减小,随应变速率增加而增加;其热激活能Q为203.643 9 kJ/mol、结构因子A为1.943 9×1014、应力因子α为0.013、应变硬化指数n为5.883 9。确定合金的主要失稳区工艺参数区间为379~420 ℃、0.75~10 s–1和480~510 ℃、1~10 s−1,安全加工区间为440~510 ℃、0.01~0.25 s−1。铸态2195铝锂合金的屈服和抗拉强度分别仅为(179±6)MPa和(239±11)MPa,经热挤压实验后分别达到(605±6)、(633±3)MPa,分别提高了3.5和2.6倍;铸态合金的显微硬度仅为(115±1)HV,热加工后型材达到(178±4)HV,相较于铸态合金增加了54%。结论 2195铝锂合金的流变行为符合正应变速率敏感特征,其安全加工区域集中在高温低应变速率区,主要发生了动态再结晶,实验型材在此区域表现出卓越的力学性能。  相似文献   

16.
目的 研究铸态30CrMnSiNi2A钢的热变形行为,并建立热加工图评估出合适的热变形参数。方法 在变形温度900~1 200 ℃和应变速率0.01~10 s1条件下开展热压缩实验,分别构建应变0.2、0.4、0.6、0.8下的热加工图,结合扫描电镜对变形后的微观组织进行分析。结果 30CrMnSiNi2A钢在压缩过程中真应力的变化是加工硬化和动态软化协同作用的结果;在低应变速率时(0.01、0.1 s1),流动曲线在应力值达到峰值应力(σp)后都表现出流动软化现象,而在高应变速率下流动曲线则表现出连续的加工硬化现象。结论 根据变形试样的微观组织和塑性流动是否稳定,可将热加工图分为3个区:流动失稳区、不完全动态再结晶区、完全动态再结晶区,在完全动态再结晶区内的晶粒细小均匀,所以将变形温度1 100~1 180 ℃、应变速率0.01~0.5 s1确定为适合于30CrMnSiNi2A钢的加工窗口。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号