首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
针对现有旋转式压电俘能器存在的问题以及旋转机械监测系统的自供电需求,提出一种旋磁激励式预弯梁压电俘能器。建立了俘能器动态响应模型,通过数值仿真和试验方法获得了转速、磁铁数量比、压缩比及负载电阻对其输出性能的影响规律。结果表明,磁铁数量比对激振力作用形式、最佳转速、谐振峰数及输出电压(振幅放大比)均有影响;激振力形式随磁铁数量比增大由脉冲激励逐渐变为正偏置的三角波激励;随着磁铁数量比的增加,谐振峰数量及最佳转速减小,存在最佳磁铁数量比使得输出电压(振幅放大比)最大;压电振子预弯装配后俘能器可实现等应变发电,适当增大压电振子的压缩比可降低俘能器轴向刚度提高俘能器在低转速域内的输出能力,最佳转速随压缩比的增加而减小,且相邻谐振峰的间距随着压缩比的增加而减小。压缩比为0.17时的最大输出电压是压缩比为0.02时的1.5倍;当磁铁数量比为0.26,压缩比为0.08,转速为448r/min时输出功率可达1.55mW。  相似文献   

2.
考虑现有旋转发电机无法适应高/匀速旋转运动且振动冲击/噪音大、可靠性低等弊端,提出了一种由旋转磁铁激励的压电俘能器,并从理论及试验两方面研究了旋转磁铁数量(间距)对激振力及压电振子发电特性的影响规律。结果表明,在其它条件确定的情况下,存在使激振力最大的最佳旋转磁铁间隙比(磁铁直径与相邻磁铁间距离之比);间隙比为2时的激振力幅值为间隙比为0和4时的6.2倍。采用2,12,24个旋转磁铁激励发电时,电压-转速特性曲线中均存在多个使输出电压出现峰值的最佳转速,其中最大峰值电压及其所对应的最佳转速分别为29.4,87.2,28.4V和1 282.5,707.5,2451r·min-1;12个旋转磁铁激励的最大输出电压为其它两种情况的3倍。此外,压电振子一次激励所生成电能(波形数量及幅值)还与旋转磁铁数量及转速有关。2个旋转磁铁在低转速时仅能激励出1个较大幅值电压波形,而高转速时可生成4个幅值较大的自由振荡波形;12个磁铁在任何转速下都仅能激励出1个电压波形。实验显示动磁铁数量是影响旋转压电俘能器发电量及输出功率的关键要素。  相似文献   

3.
为提高压电振动俘能器的环境适应性,提出一种磁耦合式可调频压电振动俘能器,利用激励器上主动磁铁和组合换能器上被动磁铁间的耦合作用及横摆簧片实现压电振子的单向限幅激励。通过对俘能器及磁对的建模和仿真分析,获得了俘能器结构参数对俘能器输出性能的影响,在此基础上制作俘能器样机并进行实验研究,获得了俘能器纵摆质量m1、横摆质量m2、横向距离Lx、纵向距离Ly、竖向距离Lz及负载电阻对俘能器输出性能的影响规律。结果表明:存在两阶谐振频率f1和f2使输出电压出现峰值Un1和Un2,调节m1,m2,Lx,Ly及Lz会影响f1,f2,Un1及Un2;其他条件一定时,存在最佳负载电阻2 200 kΩ使输出功率达到0....  相似文献   

4.
为了满足列车轮对监测系统(railway wheelset monitoring system,简称RWMS)自供电需求,提出一种通过旋转磁铁非接触轴向激励悬臂梁压电振子构成的压电发电机(即旋磁式压电悬臂梁发电机),介绍了其结构原理,研究了磁力(磁铁数量与配置方式)及其转速对发电机性能的影响。结果表明,在0~1 360r/min转速范围内存在多阶最佳转速,使发电机输出电压出现峰值。当压电悬臂梁端磁铁数固定,增加旋转磁铁数量时,各阶最佳转速值不变,但其所对应的电压增加。当转速为1 042.5r/min时,转盘同一位置安装2,4,8,12个磁铁所对应的最大电压分别为13.2,16.6,23.8,27.8V。当旋转磁铁数量固定、压电悬臂梁端部磁铁数量增加时,各阶最佳转速值降低,而其所对应的峰值电压增加。当转盘上安装2个磁铁,悬臂梁端安装1,3,5,7个磁铁时,第9阶最佳转速及电压分别为1 056.4,861.8,750.6,611.6r/min和13.2,34.4,48,64V。此外,其他参数确定时,1次激励所生成的电能(电压及其波形数量)还与转速有关,低转速(264.1r/min)时仅生成1个电压波形,而高转速(1 024.5r/min)时生成4个电压波形。  相似文献   

5.
为提高旋转式压电发电机的可靠性以及拓宽其有效转速带宽,提出了一种基于压电简支梁拉伸调频的旋磁发电机。介绍了所提发电机的结构原理,研究了动磁铁数量、压电振子预压量等因素对发电机发电性能及固有频率的影响规律。试验结果表明:发电机在转速范围内存在多个使电压出现峰值的最佳转速,各个最佳转速的数值随预压量的增大而增大,且最佳转速的数量随动磁铁数的增加而减少;调节预压量可拓宽发电机的有效转速范围,如动磁铁数为8时,当预压量为0时,发电机仅在几个谐振点达到电压要求,当预压量为1 mm、3 mm、5 mm时,有效转速范围分别扩大至321~768 r/min、160~1 000 r/min、123~1 000 r/min;该发电机固有频率可在37.33~89.60 Hz范围内进行调整,对应的转速调节范围为280~2 632 r/min。  相似文献   

6.
为满足远程监测系统的自供电需求,针对现有压电振动俘能器存在的问题,提出一种双磁耦合式压电振动俘能器,通过将压电振子对称安装于辅助悬臂梁两侧构成组合换能器,使压电片在俘能过程中主要受压应力。经建模仿真,获得了定磁铁间距与水平耦合间距对系统势能的影响规律,以及不同激励条件下的系统动力学响应特性。为验证俘能器原理的可行性与仿真结果的正确性,制作了样机并测试了不同条件下俘能器的输出特性。结果表明:激励频率对俘能器输出波形影响较大;选取适当的定磁铁间距和水平耦合间距(11 mm≤d≤12 mm,10 mm≤l≤16 mm),可有效降低俘能器固有频率、拓宽频带且幅频特性曲线较为平坦,进而提高了俘能器的环境适应性和可靠性;激励频率为12 Hz、16 Hz及20 Hz时,试验所获得的最大输出功率分别为1.27 mW、2.88 mW及5.31 mW,其所对应的最佳匹配电阻约为70 kΩ。  相似文献   

7.
为充分利用气动系统管路产生的压力冲击,提出了一种基于压电材料的正压电效应压电俘能器,搭建了基于该俘能器的实验测试系统,研究了气体压力、换向时间对该俘能器俘能特性的影响。结果表明,在气体动载荷激励下,压电俘能器内的压电片产生了弯曲形变,俘能电压与形变变化密切相关;气体压力值增大时,峰值电压、峰值功率升高;而随着换向时间的改变,峰值电压、峰值功率未有显著变化。  相似文献   

8.
针对多方向振动俘能器对低频、低幅值激励的响应输出性能低等问题,在振动俘能结构中引入非线性磁吸力,提高俘能器的响应频带和能量转换效率。研究了非线性磁振子模型,建立了基于广义Hamilton变分原理的横、纵向振动系统机电耦合模型,对系统动力学方程进行无量纲化并数值求解。搭建了振动俘能器性能测试平台,开展了多场耦合振动俘能器频谱特性及响应输出的分析实验。结果表明,引入磁铁可显著提高系统能量转换效率,当磁铁间距15mm、激励幅值0.5m/s~2时,相比无磁力输入的情况,系统响应电压提高了6倍左右,谐振频率从18Hz降至9.5Hz左右,解决了压电俘能器频带窄、响应频率高及输出电压低等问题。  相似文献   

9.
为满足旋转机械监测系统的自供电需求,提出一种由旋转磁铁与压电梁端磁铁耦合激励(简称旋磁激励)的新型压电悬臂梁发电机。建立磁力冲击载荷作用下压电梁动态响应模型,通过数值分析方法获得转速、载荷作用时间以及周期比(载荷作用时间与振动周期之比)对压电梁动态响应特性(响应波形及放大比)的影响规律。结果表明,低速时属于脉冲激励,压电梁不发生共振,而高速时属周期激励且存在多个最佳转速使放大比最大。此外,周期比给定时存在最佳转速使放大比最大,转速固定时存在最佳周期比使放大比最大、且最佳周期比随转速增加而增加。在此基础上,测试分析旋转磁铁转速/磁铁厚度以及压电梁端附加质量对发电机发电能力及特性的影响规律,证明旋磁激励式发电机原理的可行性及理论分析结论的合理性;此外,通过确定合理的冲击载荷或采用多个具有不同谐振频率压电梁同步工作的方法可有效提高发电机的速带宽度,实现较大转速范围的实时供电。  相似文献   

10.
为了提高低流速水流环境的俘能特性,基于涡激振动原理和压电振动能量采集技术,提出一种磁力增强涡激振动俘能器。该俘能器由压电层合悬臂梁、尾端圆柱绕流体和磁铁组成。首先,通过流?固?电耦合有限元仿真,分析了无附加磁力涡激振动压电俘能器的俘能特性,可知其低流速环境下俘能效率较低;其次,搭建流致振动俘能器实验平台,研究了磁力增强俘能器的俘能特性。实验结果表明:在横斥纵吸磁铁布置情况下,压电俘能器结构的固有频率较低,在较低流速下更容易起振,且达到涡激共振所需的流速范围较低;在磁场力的作用下其振动变形较大,输出电压较高,振动频带较宽;当水流流速为0.5 m/s时,磁力增强压电俘能器的输出功率均方根值达到120 μW,较无附磁情况的压电俘能器提高了57.8%,这表明横斥纵吸附磁式涡激振动压电俘能器在较低流速流场环境中具有更高的俘能效率。  相似文献   

11.
提出一种由压电梁及其端部附加质量构成的直激式压电风能捕获器。在考虑了压电振子静平衡变形的基础上,根据涡激振动理论建立了柔性压电振子的自激振动理论模型并进行了仿真分析,获得了压电梁厚度比、附加质量及风速对其发电性能的影响规律。结果表明,存在最佳的压电梁厚度比使输出电压、电能及功率最大,电压/电能/功率所对应的最佳厚度比分别为0.5/0.65/0.65。其它参数确定时,存在最佳风速/附加质量使输出电压最大,且最佳风速随附加质量增加而降低、最佳质量随风速增加而降低。制作了风能捕获器样机并进行了试验测试,风速为4.8/7.2/10m/s时,对应的最佳附加质量及最大电压分别为15/11/7g和1.9/3.94/6.18V;风速为10m/s时,10g附加质量下的输出电压为0/20g附加质量下的4.1/1.2倍。结果证明根据实际风速范围确定合理的附加质量可提高发电能力。  相似文献   

12.
为实现高压密闭环境的气体能量收集并提高能量转化效率,提出了一种气流冲击式压电阵列发电机。利用压电材料的正压电效应并结合压电本构方程对压电发电机理进行分析,结果表明在高压气体环境下可采用盘型压电片进行气体能量收集,且压电片外圆周需进行机械夹紧固定。设计并制作了一种压电发电阵列实验样机,搭建了实验测试系统。以高压气体为激励源对不同流量、周期及负载条件的改变进行了实验测试。实验结果表明,峰值电压与流量成正比,随着周期的增加峰值电压有小幅度的增长趋势,压电阵列在电学并联的情况下具有最佳的功率输出性能,当周期为0.8 s、流量为200 L/min、压力为0.3 MPa时最佳的输出功率是0.99 mW。  相似文献   

13.
为了探究三稳态压电振动能量采集器的动力学特性,以磁-机-压电耦合型三稳态压电振动能量采集器(tristable piezoelectric vibration energy harvester,简称TPVEH)为研究对象,利用磁荷法、力平衡和基尔霍夫定律分别建立了采集器末端磁铁与外部磁铁之间的非线性磁力模型和系统集总参数动力学模型。仿真分析了磁铁间距、激励加速度幅值和频率等参数对采集器动力学特性和采集电压的影响。研制了三稳态压电振动能量采集器原理样机,搭建了实验测试平台,实验验证了仿真结果的正确性。研究结果表明,随着激励加速度幅值增大,能量采集器依次经历单稳态、双稳态和三稳态3种运动状态,且三稳态运动时的工作频带和输出性能(位移、速度和采集电压)比双稳态和单稳态时要高。  相似文献   

14.
设计了一种安装在鞋上的压电俘能器(PEH),用于收集人体行走时产生的能量。该俘能器由4根压电悬臂梁和1个弹簧-质量系统组成。弹簧-质量系统能够感知沿径骨轴的加速度激励,并通过磁耦合驱动压电梁振动从而发电。文中通过拟合实验数据获得加速度信号表达式;然后,建立仿真模型,对俘能器的发电性能进行了仿真分析。最后,加工了实验样机,并实验测试了俘能器的发电性能。结果表明,当受到沿胫骨方向的激励时,压电梁在一个步态周期内可被弹簧-质量系统激励多次从而产生多个峰值电压;受到沿胫骨和脚面两个方向激励时,压电梁的发电性能比只受到单一方向激励时好。当步行速度为2~8km/h时,每根压电梁的峰值电压可达到10V。该俘能器能够从人体行走的超低频运动中收集能量,并能够同时收集两个方向的加速度能量,提高了压电梁的发电性能。  相似文献   

15.
限幅激励式压电发电机性能分析与试验   总被引:1,自引:1,他引:0  
为提高旋转式压电发电机的可靠性及有效带宽,提出一种限幅激励式压电发电机,利用凸轮激励压电振子使其发生幅值可控的单向变形。从理论和试验两方面研究凸轮升程与升角、激振力及弹簧刚度等对发电机输出性能的影响规律。研究结果表明,利用移动凸轮限幅激励压电振子可获得无明显峰值、较平坦的电压幅频特性曲线;其他条件相同时,降低凸轮升程有助于降低最大输出电压、拓宽有效转速带宽,凸轮升角(30°~45°)增加对最大输出电压无影响、但可拓宽有效转速带宽,增加激振力可拓宽某一输出电压所对应的有效带宽,复位和缓冲弹簧刚度对有效转速带宽及转速值都有一定的影响,当复位弹簧刚度50 N/m、缓冲弹簧刚度20 N/m、激励距离8 mm、凸轮升程2 mm、升角为40°时,输出电压大于30 V所对应的有效转速范围为0~537.6 r/min,故通过合理匹配系统参数可有效提高发电机的可靠性及有效带宽;存在最佳电阻使发电机输出功率达到最大值,最佳电阻70 kΩ、转速392 r/min时的输出功率为10.88 mW。  相似文献   

16.
为实现低频/宽频带/高强度振动能量回收及基于能量回收的主动振动控制,提出了一种气体耦合式振动俘能器。介绍了俘能器的系统构成原理,对其能量回收特性进行了理论与试验研究。理论分析结果表明,俘能器的发电能力及特性是由环境振动强度、气缸/压电振子的结构与性能参数、系统质量/背压等多种要素共同决定的;其它条件确定时,存在使电压最大的最佳频率以及使俘能器工作与否的最低临界频率;增加背压/质量可不同程度地提高俘能器的输出电压和有效带宽、降低临界频率,但对最佳频率无明显影响。采用Ф60×0.9mm3双晶压电振子及Ф16×100mm3气缸制作了样机,测试了不同背压及质量时俘能器的电压-频率特性。结果表明,俘能器最佳/临界频率、最大输出电压及有效带宽等与背压/质量关系均与理论分析结果相吻合。不同条件下所测得的最佳频率均为55Hz左右;背压0.4 MPa、质量10kg时所获得临界频率/最大输出电压/对应25V输出电压有效带宽为9Hz/88V/72Hz,分别为质量2.5kg时的0.36倍、2倍和2.2倍。  相似文献   

17.
文中基于压电阵列双相能量收集器的压电效应和磁–力–电耦合效应,提出了一种宽频的能量收集结构.该结构可同时俘获环境中广泛存在的机械振动和磁场能量,从而实现低功耗电子设备的自供电.利用有限元软件COMSOL建立了压电阵列双相能量收集器的几何模型并进行数值仿真,分析了不同载荷以及组份材料参数对俘能器性能的影响.研究结果表明,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号