首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以布尔台煤矿上下煤层叠加采动影响下保留巷道严重变形破坏为工程背景,采用理论分析、现场监测、实验室试验、数值模拟和工业性试验等综合研究方法,从巷道围岩塑性区形成和发展的角度,对巷道围岩破坏特征、采动应力时空演化规律、保留巷道塑性区恶性扩展破坏机理、应力调控围岩控制技术方面进行系统研究。结果表明:上下煤层叠加采动后,保留巷道处于高应力比值带,主应力比值为1.84~2.22,最大主应力与竖直方向夹角为39.7°~41.9°,导致巷道围岩塑性区恶性扩展,顶板破坏深度7.5 m,底板破坏深度4.5 m,煤柱帮破坏深度3 m,煤壁帮破坏深度2.25 m。基于塑性区破坏机理提出应力调控技术,通过改变煤柱尺寸或上下工作面开采布局等手段调控围岩应力,减小围岩塑性破坏范围,并进行工业性试验,取得良好的应用效果。  相似文献   

2.
《煤炭技术》2021,40(8):27-31
针对王家塔煤矿3s101工作面采空区侧保留巷道受采动影响导致围岩破坏变形的问题,采用现场监测、理论分析、数值模拟等研究方法,对采动影响下保留巷道的围岩变形破坏特征、采动应力分布规律、以及围岩塑性破坏特征进行了研究。结果表明:受工作面采动影响,保留巷道位移变化主要在工作面后方顶底板,最大顶底板移近量达310 mm;巷道围岩主应力、主应力比值、最大主应力与z轴夹角的变化值在工作面后方175 m左右达到最大,最大主应力达到16 MPa,主应力比值达到2.32,最大主应力与z轴的夹角偏转至20°左右;受采动应力的影响,巷道围岩塑性破坏区也主要发生在工作面后方,塑性破坏范围在工作面后方175 m左右达到最大,顶板最大破坏深度达7.5 m。针对性地提出了“锚索+钢带”加强支护顶板的补强治理方案,保证了巷道围岩稳定,回采期间安全生产。  相似文献   

3.
软弱顶板条件下,巷道在原岩应力与采动应力叠加作用下会出现深度较大的塑性破坏区,引发剧烈的巷道围岩变形,甚至出现冒顶隐患。为掌握采动过程中塑性区在软弱顶板中的演化规律,以敏东一矿回采巷道为工程背景,系统研究了采动前后巷道围岩塑性区分布与演化特征,结果表明:在本工作面超前支承压力和上区段工作面采空区侧向支承压力的叠加影响下,采动巷道周边两个主应力比值急剧升高,同时,受邻近工作面覆岩移动影响,巷道围岩周边应力中的最大主应力方向也将发生大幅度的偏转。伴随着软弱顶板采动巷道围岩主应力大小和方向的不断演化,最大塑性破裂深度逐渐扩展且朝向顶板,塑性区扩展过程中会出现隔层分布现象,顶板剧烈变形主要是由塑性破坏产生,各层位顶板的破裂顺序依次为浅部塑性破坏、高位软岩塑性破坏和中位岩层的破裂。中部层位的断裂破坏一般滞后于高位穿透塑性区的形成。期间巷道围岩出现严重的非均匀性大变形,支护难度极大。据此提出了以注浆锚索为核心的顶板控制方法,注浆层位应主要集中在采动期间发生高位穿透塑性破坏的层位,注浆覆盖范围应不小于高位穿透塑性破坏的分布范围,巷道顶板变形监测结果表明,顶板控制效果良好,顶板未出现安全隐患且变形量在允许范围内。  相似文献   

4.
为了研究开采扰动诱发底板瓦斯抽采巷围岩失稳问题,以龙凤煤矿5921底板瓦斯抽采巷为研究对象,采用数值模拟的方法分析了5921工作面开采过程中底板瓦斯抽采巷围岩应力演化过程及围岩变形破坏特征。研究结果表明:垂直应力在巷道跨度范围内随深度增加而增大,巷道位于工作面前方的位置,围岩应力分布特征大致相同,巷道位于采空区的部位,左帮岩体处于卸荷状态,而右帮岩体出现明显的应力集中现象;围岩变形在时空上相较工作面开采有一定的滞后,底板瓦斯抽采巷最大变形位置滞后于回采工作面10~30 m,工作面前方10 m范围内围岩变形呈增加趋势;底板瓦斯抽采巷位于采空区范围内的部位破坏以拉伸破坏为主,位于煤壁前方支承压力区的部位破坏则以拉伸-剪切组合破坏模式为主,巷道顶板垮落、底鼓的风险较大。  相似文献   

5.
深部采动巷道顶板稳定性分析与控制   总被引:3,自引:0,他引:3       下载免费PDF全文
马念杰  赵希栋  赵志强  李季  郭晓菲 《煤炭学报》2015,40(10):2287-2295
深部采动巷道冒顶事故是当前煤炭资源开采中面临的重大难题。基于深部采动巷道围岩应力环境,分析了双向非等压条件下巷道围岩塑性区形成的力学机制及其形态特征,并对顶板稳定性影响因素进行了探讨。结果表明:1深部采动巷道围岩双向压力比值λ(0λ1)较小时,围岩塑性区形态不再是圆形和类椭圆形,而呈现出蝶形分布的特征,当碟叶位于巷道顶板上方时,容易发生冒顶;2采动应力方向决定围岩最大破坏深度的位置,并控制潜在冒落区的范围,当围岩最大破坏深度与潜在冒落高度相同时,顶板稳定性最差。要保持顶板围岩稳定,支护体必须要有足够的长度和延伸性能,据此,提出了可接长锚杆支护技术,现场试验结果表明,可接长锚杆较好地适应了顶板围岩的剧烈下沉,取得了良好的支护效果。  相似文献   

6.
明确工作面底板采动应力分布规律,实现采动影响下底板岩体及巷道破坏程度的精准把握,能有效防止底板巷道的变形失稳。为此,根据极限平衡理论,构建煤岩体超前采动应力力学模型,获得支承压力扰动阶段和采空区卸压阶段底板岩体的力学分布规律,并基于压剪破坏准则及岩体卸荷损伤机制,得到底板岩体及巷道围岩破坏时空演化特征,进一步采用数值模拟进行可靠性验证。结果表明:采高增大,工作面前方煤体塑性区范围增大,超前支承压力集中系数减小;超前采动支承压力越大,底板岩体内主应力差越小,莫尔应力圆半径小,对底板的影响强度减弱,具体表现为底板岩体压剪破坏深度的减小;卸荷后底板岩体受力状态相同,岩体卸荷起点的增大,卸荷量增加,卸荷张拉破坏加剧,底板岩体塑性区呈“马鞍形”;推进过程中巷道围岩塑性区发生由“椭圆形”-“蝶形”-“竖直椭圆形”时空演化特征,采动支承应力越大,巷道破坏越严重,破坏主要集中在顶板及肩角位置。设计初采高度为3.5 m,通过布设光纤测试系统,得到采动过程中底板岩体及巷道随工作面推进变形与破坏的时空演化规律,测得底板岩体破坏深度最大为16.7 m,巷道围岩破坏深度最大为5.2 m,巷道围岩体在整个监测期间...  相似文献   

7.
针对深部近距离多重采动影响跨采底板煤巷围岩塑性大变形破坏特征,研究了深部近距离变间距跨采煤巷围岩变形破坏及巷道底臌影响因素;通过数值模拟对跨采底板煤巷层间临界煤岩柱及合理内错距离进行优化研究,掌握多重采动影响条件下跨采煤巷动显规律,及多元应力叠加条件下跨采巷道围岩应力场动态演化规律;结合巷道围岩性态、层间距差异等制定了适合多重采动影响跨采底板煤巷动态分段耦合控制技术,并进行了工程试验研究.应用表明:跨采巷道围岩应力集中程度减弱,分布更加趋于均匀化,运输巷围岩的破坏范围及破坏深度减少,分段动态支护方式在深部近距离跨采巷道支护领域具有重要推广应用价值.  相似文献   

8.
跨采巷道的围岩稳定性预测与控制   总被引:3,自引:0,他引:3  
利用数值仿真的方法研究了在移动支承压力作用下,煤层底板巷道围岩的位移、应力和塑性区发展规律以及采煤工作面位置对其底板巷道围岩位移的影响.研究结果表明,在跨采过程中,跨采对底板巷道的影响范围为采煤工作面前65 m至工作面后25 m,同时在应力增高区范围内的巷道围岩位移最大,在应力降低区范围内的巷道围岩位移最小,巷道围岩位移最大值发生在采煤工作面前15 m处,最小值则发生在采煤工作面后5 m处;在采煤工作面的推进过程中其下部巷道顶板、底板和两帮均处在不稳定阶段,可采用锚杆、锚索与注浆联合加固技术措施,以保证底板巷道跨采期间的安全使用.  相似文献   

9.
利用数值仿真的方法研究了在移动支承压力作用下,煤层底板巷道围岩的位移、应力和塑性区发展规律以及采煤工作面位置对其底板巷道围岩位移的影响.研究结果表明,在跨采过程中,跨采对底板巷道的影响范围为采煤工作面前65m至工作面后25m,同时在应力增高区范围内的巷道围岩位移最大,在应力降低区范围内的巷道围岩位移最小,巷道围岩位移最大值发生在采煤工作面前15m处,最小值则发生在采煤工作面后5m处;在采煤工作面的推进过程中其下部巷道顶板、底板和两帮均处在不稳定阶段,可采用锚杆、锚索与注浆联合加固技术措施,以保证底板巷道跨采期间的安全使用.  相似文献   

10.
利用数值仿真的方法研究了在移动支承压力作用下,煤层底板巷道围岩的位移、应力和塑性区发展规律以及采煤工作面位置对其底板巷道围岩位移的影响.研究结果表明,在跨采过程中,跨采对底板巷道的影响范围为采煤工作面前65m至工作面后25m,同时在应力增高区范围内的巷道围岩位移最大,在应力降低区范围内的巷道围岩位移最小,巷道围岩位移最大值发生在采煤工作面前15m处,最小值则发生在采煤工作面后5m处;在采煤工作面的推进过程中其下部巷道顶板、底板和两帮均处在不稳定阶段,可采用锚杆、锚索与注浆联合加固技术措施,以保证底板幕道跨粟期间的安全使用.  相似文献   

11.
针对平煤十矿采区底板回风下山巷道工程地质条件,通过数值计算研究了深部回风下山底板巷道变形破坏严重的主要原因、跨采前后底板巷道围岩应力场和位移场以及跨采期间巷道围岩变形规律。研究结果表明,原岩应力高、围岩岩性差以及工作面采动影响,是采区回风下山巷道围岩变形失稳破坏严重的主要原因。跨采前巷道底板应力场呈"泡形"分布规律,巷道围岩最大应力集中系数为2~3;跨采后底板巷道围岩应力恢复到原岩应力。跨采期间底板巷道围岩移近量为底板巷道与跨采工作面水平距离L的单调递增函数。研究结论对于实现采煤工作面安全跨采提供了技术支撑。  相似文献   

12.
黄聪  王卫军  袁超  肖宇 《煤炭技术》2020,39(2):12-15
为了研究采动影响下的复合顶板巷道大幅下沉问题,以江西曲江煤矿212工作面风巷为例,采用现场调查、数值分析等方法,对巷道围岩应力状态,塑性区形成及扩展进行了分析,研究结果表明:受工作面回采期间的采动影响,巷道顶板垂直应力增大,最大主应力方向向着工作面采空区侧发生不同程度的偏转;最大主应力方向导致巷道围岩蝶形塑性区旋转,并且两者的旋转具有高度一致性;当巷道围岩塑性区蝶叶扩展至顶板正上方时,锚索锚固端全部处于塑性区内,使得锚索完全失效,同顶板一同下沉。  相似文献   

13.
针对近距离跨采软岩巷道围岩变形破坏严重与难控制的问题,以内蒙古诚意煤矿II0116回风大巷为例进行研究,建立了底板应力增量计算模型,得出了底板应力增量变化规律,运用FLAC3D6.0软件模拟计算了跨采作用下底板巷道围岩塑性区的动态扩展过程,并分析了围岩的变形特征和破坏机理。根据理论分析和数值模拟结果提出了此类巷道的控制技术:顶板短锚索+帮部锚杆及时非均匀初次支护快速组合顶板围岩,形成内承载结构;全断面滞后注浆强化围岩,提高内承载结构的整体性;顶板长锚索二次补强支护,把前期形成的内承载结构与巷道围岩深部自有的稳定外承载结构联合成更大的承载结构,以抵抗跨采期间强烈采动影响。针对II0116回风大巷的特点设计了支护方案,工程实践结果表明:采用该方案降低了支护密度,有利于综合机械化快速掘进的实施,底板巷道围岩变形稳定,保证了巷道的长期使用。  相似文献   

14.
在地质力学现场测试的基础上,针对巷道顶板坚硬、煤帮与底板极其松软的特点,分析了巷道围岩变形破坏特征,指出围岩松软强度低、采动高应力环境、初期支护强度刚度不足是造成巷道破坏的原因;并提出采用预应力锚固与注浆联合加固技术解决采动影响下松软巷道围岩控制难题,井下工业试验结果表明,注浆加固后大幅度提高了围岩整体稳定性,两帮最大移近量为35mm,顶底板最大移近量为19mm,围岩变形得到有效控制,基本杜绝了巷道维修。  相似文献   

15.
为深入研究庞庞塔煤矿跨采工作面推进方向与-550 m水平大巷平行情况下的巷道底板稳定性,模拟分析了回采期间在-550 m水平大巷与采煤工作面的垂直距离为28 m的条件下,采场边界跨过-550 m水平大巷6,16,26 m 3种不同水平距离时的跨采方案。研究表明:(1)当水平距离为6 m时,塑性区最大,巷道两帮和顶底板破坏较明显,最大破坏深度位于距离顶板2 m处;(2)随着水平距离增加,塑性区尺寸线性缩小,当水平距离大于16 m时,最大塑性区深度小于1.7 m;(3)当水平距离增大至26 m时,最大塑性区深度减少至1 m,因此在水平距离大于26 m的范围内进行开挖巷道,所受采动影响较小。根据上述分析,设计了跨采前巷道支护方案,即巷道顶板采用锚杆支护,两帮采用锚网喷支护,详细讨论了支护参数取值及支护施工流程,可为类似生产条件下巷道设计及支护提供借鉴。  相似文献   

16.
为了研究极近距离煤层上煤层开采后应力、采空区对下煤层回采巷道布置及支护效果的影响,采用理论分析、数值模拟和现场实践等方法,根据塑性理论计算采空区底板最大破坏深度及范围,最大破坏深度达9.2 m,破坏范围为20.5 m.通过FLAC3D数值软件模拟分析了极近距离煤层开采底板巷道围岩应力分布规律,得出距离底板不同深度的应力...  相似文献   

17.
针对跨采底板巷道变形大、难以维护难题,以祁南煤矿跨采东翼底板轨道运输大巷为工程背景,采用FLAC3D数值模拟与现场实测相结合的方法,研究工作面跨采过程中底板巷道围岩应力场分布及煤层底板岩层破坏特征,确定合理的压裂层位与时机,分析不同压裂参数下巷道围岩应力转移规律,提出压裂卸压控制技术方案。研究结果表明:随着底板巷道与回采工作面水平距离的减小,巷道围岩应力集中程度与高应力区范围明显增大,导致巷道围岩变形加剧;压裂工作应在煤壁前方底板高应力区与巷道围岩高应力区贯通前完成;巷道上方粉砂岩作为主要承载和施载层,是压裂的关键层位;压裂卸压后,煤壁前方高应力区由巷道向压裂区转移,随着压裂区宽度增大,巷道两帮垂直应力峰值逐渐降低并趋于稳定;合理的压裂区范围为巷道左侧宽14 m、右侧宽10 m。现场工业性试验表明,岩层压裂卸压对跨采底板巷道围岩稳定性控制效果显著。  相似文献   

18.
针对采动巷道围岩变形剧烈、冒顶事故频发等问题,以保德矿回采巷道为工程背景,综合现场测试、数值模拟、理论分析和顶板探测等方法,从巷道围岩主应力大小、比值和方向3个因素研究分析了采动巷道应力场环境特征,并以巷道蝶形塑性区理论为主线,揭示了采动巷道应力场环境特征与冒顶的内在联系。结果表明:采动空间不同位置的围岩主应力大小、比值和方向具有明显差异,保德矿工作面侧方10~50 m范围内,主应力比值可达2~5,主应力方向的偏转角度可达26°~54°,主应力比值的升高与方向的大幅度旋转导致该区域巷道围岩塑性区呈现蝶叶偏向顶板的蝶形特征,造成其顶板塑性破坏深度较大,当支护不能承受蝶叶内围岩巨大的膨胀压力和强烈变形时,巷道便发生蝶叶型冒顶。  相似文献   

19.
不同水平应力对巷道稳定性的模拟研究   总被引:8,自引:0,他引:8  
水平构造应力是影响巷道围岩稳定的重要因素之一,通过相似材料模拟试验和数值模拟方法研究不同水平应力作用下锚杆支护巷道以及无支护条件下巷道围岩变形破坏特征.物理模拟较好的反映了巷道顶板的冒落和底板的鼓起状况,数值模拟反映巷道周围塑性范围和应力分布.模拟结果表明,随着水平应力增加,水平应力向巷道顶底板深部传递的趋势明显,导致巷道底鼓及褶皱形破坏,顶板剪切变形及楔形冒落.顶底板变形破坏大于巷道两帮的变形破坏.因此,高水平应力作用下,巷道顶底板是巷道控制的重点.锚网索喷一次支护配合长环形U钢支架二次支护是解决高水平应力作用下巷道支护的有效手段之一.  相似文献   

20.
以界沟煤矿8220工作面机巷为研究对象,针对7220工作面回采造成8220机巷顶板不稳定的情况,运用极限平衡理论和弹性力学理论对煤柱一侧塑性区宽度和上位煤层底板应力分布规律进行研究。结果表明,7#煤煤柱一侧塑性区宽度x0为21.1 m,上位煤层开采后,原岩应力平衡状态被打破,在煤壁附近区域出现了应力集中区和卸压区。底板最大破坏深度hmax为15.91m,由塑性区宽度得出煤层底板最大破坏深度与煤壁的水平距离为7.41 m,采空区底板破坏区沿水平方向的最大距离为84.3 m。根据7#煤层采空区左侧煤壁与8#煤层回采巷道顶板中心线的相对位置不同,提出4套布置方案,通过综合分析,当煤壁与回采巷道顶板中心线距离为22 m时,回采巷道受力较小且均匀,塑性区分布不大,围岩变形量也很小,为最佳布置方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号