首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
山西省常村矿二盘区巷道围岩为第Ⅳ类不稳定围岩,围岩压力大,矿压显现剧烈,评价巷道支护效果,在实验室取得的3号煤煤岩物理力学参数及巷道支护参数基础之上对巷道支付方式进行数值模拟分析,通过分析巷道开挖后的围岩应力、变形及破坏深度得出:巷道变形量左帮65 mm、右帮66 mm、顶板32 mm,围岩破坏深度顶板1.5 m、底板1.5 m、两帮1.5 m。在现有巷道围岩支护情况下,围岩得到了有效地控制。  相似文献   

2.
针对回采等造成的非均称变形巷道支护难题,采用实验室实验、数值模拟、理论分析和现场工业试验的综合方法,研究了非均称变形巷道围岩位移、应力和塑性区等围岩稳定性指标变化规律,以及高强度分区锚网索支护作用,提出了非均称变形巷道高强度分区锚网索支护技术。研究结果表明:煤层回采等造成巷道周围应力非均称分布,导致围岩变形以顶板非均称下沉和两帮不对称位移为主;靠近采空区侧煤帮强度弱化,促使巷帮及顶板深部岩体向塑性破坏状态转变,围岩稳定性急剧劣化;同时,巷道帮部稳定性与顶板稳定性呈非线性正比关系,随着帮部变形量增加,顶板下沉量急剧增加,而顶板急剧下沉加速帮部煤体破坏。对顶板和两帮分区设计支护参数,增大采空区侧煤帮承载能力,减小顶板及实体煤帮围岩破坏范围,提高顶板以及作为顶板基础的两帮强度和抗变形能力,有效控制巷道非均称变形。  相似文献   

3.
为了解决煤矿大断面托顶煤回采巷道支护问题,以王庄煤矿7105工作面运输巷为工程背景,通过数值模拟分析了大断面托顶煤巷道裸巷平衡时围岩塑性区形态、位移及应力演化规律;基于普氏自然平衡拱理论,建立了两帮稳定时大断面托顶煤巷道顶板冒落拱力学模型,通过数学计算得到了分层冒落拱高度,运用两帮塑性区力学模型计算托顶煤巷道帮部塑性区宽度,结合数值模拟方法,设计了锚杆锚索联合支护参数和支护方案,并应用于工程实践。研究结果表明:巷道周边出现"蛙形"塑性区,顶板拉伸破坏区呈规则穹隆形,与巷道顶板普氏拱效应相吻合,托顶煤离层严重,冒落拱高度超过托顶煤厚度;两帮在该工况下塑性区发展有限,帮部较为稳定;在厚顶煤存在情况下,大断面托顶煤巷道变形特点是顶板最大,帮部次之,底板最小。现场监测结果证明,借助大断面托顶煤巷道顶板冒落拱力学模型、两帮塑性区力学模型理论计算,结合数值模拟比选的巷道锚杆支护参数和支护方案,能有效控制围岩变形,保持巷道稳定。  相似文献   

4.
《煤》2016,(12)
运用FLAC~(3D)数值模拟软件,对特厚煤层的厚顶煤全煤型巷道、厚顶煤非全煤型巷道以及通常的复合顶板巷道的变形特征进行了对比分析研究。结果表明:特厚煤层巷道围岩变形特征与一般的复合顶板巷道在开挖初期围岩变形的强烈程度、塑性区的发展与破坏方式、围岩变形量的主要来源有类似之处;不同之处在于:巷道开挖初期围岩变形为顶帮协同变形;随着时间的增加,顶板变形速率与变形量均小于复合顶板巷道,巷道的垮冒突发性较强,不容易准确判断预测,其巷道稳定性取决于厚顶煤结构的稳定性。  相似文献   

5.
伯方煤矿二盘区巷道围岩为第Ⅳ类不稳定围岩,围岩压力大,矿压显现剧烈,评价巷道支护效果,在实验室取得的3号煤煤岩物理力学参数及巷道支护参数基础之上对巷道支付方式进行数值模拟分析,通过分析巷道开挖后的围岩应力、变形及破坏深度得出:巷道变形量左帮65mm、右帮66mm、顶板32mm,围岩破坏深度顶板1.5m、底板1.5m、两帮1.5m。对3211回风巷掘进工作面的围岩变形及锚杆受力监测结果说明联合支护对动压有一定的承受能力,在现有伯方煤矿巷道围岩支护情况下,围岩得到了有效地控制。  相似文献   

6.
针对深部应力作用及常规支护条件下厚顶煤矩形断面巷道围岩变形量大的问题,分析主要原因是巷道肩部围岩裂隙发育,顶帮锚固体相互独立,支护结构松散。从厚顶煤巷道围岩失稳破坏机理出发,采用FLAC3D数值计算,对顶帮整体锚固支护体系及传统锚固支护的支护预应力场分布特征及巷道围岩变形破坏规律进行了对比分析。结果表明,顶帮整体锚固支护体系能够改善肩部围岩为挤压式传力机制,抑制肩角处围岩剪切裂隙的产生和发育,增强顶帮围岩在空间上的相互支撑作用,有效提高围岩自承能力,防止厚顶煤巷道发生冒顶、片帮等非线性大变形现象。现场应用表明,采用顶帮整体锚固支护体系后,巷道顶板最大下沉量为50 mm,两帮移近量最大为100 mm,支护效果良好。  相似文献   

7.
《煤炭技术》2017,(3):32-34
针对塔拉壕煤矿2煤大巷软弱围岩的条件,采用数值模拟对大巷围岩塑性区进行分析。结果显示顶板最大破坏深度1 m,帮部破坏不明显,结合理论分析对大巷支护参数进行了优化设计。工程试验表明:巷道最大位移量约10 mm,位移主要发生在顶板上方0~2 m,巷道能够保持稳定。  相似文献   

8.
《煤矿安全》2016,(9):229-232
为解决厚顶煤高煤帮巷道围岩控制难题,通过数值模拟研究了不同高度时巷道围岩的变形破坏情况。结果表明:巷道高度的增加对两帮的变形破坏影响最大,顶板次之;在巷道顶板和两帮岩层中存在围岩变形剧烈程度的分界点,且分界点位置与断面尺寸、顶板岩性有关。根据巷道围岩的变形破坏特征和具体生产地质条件确定了锚杆锚索联合支护方案,现场实践表明该方案有效控制了巷道围岩变形。  相似文献   

9.
以某矿三采区运输下山为工程背景,基于原锚网索支护巷道变形破坏特点和原因,提出了深埋软岩煤巷U型钢支架-锚网索耦合支护技术,并利用3DEC数值模拟分析其围岩应力、位移、塑性区等特征。结果表明:相比于原支护,巷道两帮及顶板浅部围岩应力明显增加,变形量、塑性区深度降低显著,顶底板移近量108.56 mm、两帮变形量61.39 mm、最大塑性区深度3 m,支护效果显著;现场巷道顶底板和两帮变形量为115.95 mm和67.00 mm,顶板离层基本为0,验证了支护技术的可靠性。  相似文献   

10.
许磊 《煤炭工程》2014,46(6):36-38
文章以宋家沟矿厚煤层回采巷道超高段(断面:5.2m×7.5m)为研究对象,采用数值分析的手段模拟了巷高3.5~7.5m的过程中围岩塑性区的分布特征:顶、底、两帮塑性区分布大致呈"半圆状",两帮塑性区面积和深度随着巷高的增加而明显增加;两帮移近量、顶板下沉量、底鼓量与巷高呈正比关系。根据塑性区分布特征和当前主要支护手段,决定采用高强高预紧力及时支护技术和帮部斜拉锚索加强支护的支护方式,采用工程类比和理论分析的方法确定了支护参数。工程实践结果:两帮移近量150mm,顶底板移近量104mm。  相似文献   

11.
针对塔拉壕煤矿2102辅运输巷掘进期间曾发生冒顶事故,为了保证弱黏结顶板巷道支护安全可靠,通过计算机数值模拟研究了主应力偏转方向为0°、15°、30°、45°、60°、75°及90°时,弱黏结顶板巷道围岩塑性区的分布特征,揭示了巷道围岩的破坏规律,当主应力偏转方向为30°和45°时,顶板围岩塑性区尺寸最大,破坏深度达3.9 m,帮部围岩塑性破坏程度较小,塑性区尺寸为0.5 m。重点对顶板进行支护,根据悬吊理论计算,提出了防冒顶的锚杆索支护参数。结果表明,顶板位移量很小,为5~12 mm,离层主要发生在0~2 m层位,占65%以上,巷道几乎不发生变形,没出现冒顶事故,基本能够保持稳定。  相似文献   

12.
为解决红庆梁矿双巷留巷在一次采动后围岩失稳的问题,通过数值模拟对2次采动影响下的主应力差值分布特征及留巷在不同应力阶段下的塑性区特征进行研究。结果表明:留巷围岩主应力差值在一次采动和二次采动影响下经历了5个阶段,且呈现出阶段性增加的特征;留巷围岩在一次采动期间顶板塑性区由1.2 m增大到2.1 m,煤壁帮和煤柱帮塑性区由0.5 m分别增大到2.0 m和1.5m,在受二次采动应力影响后塑性区的扩展呈非对称的特点,顶板塑性区在煤柱帮侧塑性破坏较多,破坏深度可达3.0 m,两帮塑性破坏较对称,塑性破坏范围可达2.5 m。最终提出针对性的补强支护措施,现场应用后围岩顶底板移近量减小了38%,两帮移近量减小了36%,维护了巷道围岩的稳定。  相似文献   

13.
通过对大倾角煤层软岩回采巷道失稳特征的理论分析,建立了大倾角煤层软岩回采巷道围岩失稳状态方程,结合耦合支护思路分析,提出了大倾角煤层软岩回采巷道耦合支护方案,并运用数值计算、相似模拟实验及现场支护试验监测对回采巷道耦合支护方案进行综合分析。结果表明:回采巷道顶板失稳呈弧形非对称破断,两帮失稳主要表现为三角形破断体剪切滑移,破坏严重处位于帮角上部,顶板偏中上部破断是围岩失稳诱发点,围岩稳定性与煤层倾角、剪切面长度及煤岩体物理力学参数有关。巷道支护后,沿煤层倾向围岩塑性破坏区较小,顶板离层量保持在合理范围内,提高两帮支护强度利于巷道围岩稳定。  相似文献   

14.
为了解决大跨度高煤帮巷道支护难题,采用数值模拟方式,分析了"定宽不定高"和"定高不定宽"2种状况下大跨度高煤帮巷道的变形破坏特征,得出:"定宽不定高"时,巷道高度和两帮煤岩体的稳定性有直接的关系,高度越大,帮部塑性区越大,大断面巷道两帮必须降低起锚高度,防止巷道底角的屈服破坏;"定高不定宽"时,巷道跨度的变化主要影响顶板底板的塑性区分布,而当顶板围岩条件差时,需利用锚索的减跨作用来控制顶板挠曲。  相似文献   

15.
为保障伊田煤业2105运输顺槽机头硐室围岩的稳定,通过分析机头硐室处围岩赋存的具体情况,采用数值模拟的方式对节理发育回采巷道的变形规律进行记性分析,得出在主节理为15°时巷道围岩变形及塑性区发育最大,主节理发育倾角为65°时,巷道顶板塑性区的发育深度约为1.53 m,左帮下部和右帮下部的塑性区发育深度最大,分别为1.92和1.21 m,结合具体地质条件对巷道的支护方案进行具体设计,并进行矿压监测验证支护效果。结果表明,支护方案实施后,运输顺槽机头硐室顶底板和两帮变形量的最大值分别为12和9.5 mm,保障了回采巷道围岩的稳定。  相似文献   

16.
为了研究厚顶煤大断面巷道掘进过程中的巷道围岩破坏情况及合理支护方式,采用数值模拟和井下试验方法分析了不同巷道宽度下巷道围岩的变形破坏情况及不同支护方式对巷道围岩稳定性的影响,研究结果表明:巷道宽度变化对厚煤层顶板稳定性影响较大,巷道宽度由4 m增加到6 m时,顶板沉降量增加了55 mm,最大变形出现在厚煤层顶板中部,采取高预应力锚杆索支护方式并适当提高顶板支护密度,可以对浅部围岩施加更大压应力,进而更好地控制顶板沉降,井下工程实践表明:合理的锚杆索预紧力及支护参数可保持巷道围岩结构稳定性,矿压监测数据显示,两帮变形最大均未超过40 mm,顶板最大离层值未超过100 mm,锚杆、锚索受力始终保持稳定,支护效果良好。  相似文献   

17.
煤层巷道两帮煤体相对顶底板岩层强度低、可变形性强,两帮煤体大变形对巷道围岩整体稳定性有着极其重要的影响。基于煤巷两帮煤体严重变形的工程实际,考虑巷道两帮煤岩体的可变形性,建立了由Winkler可变形基础支承的顶板悬梁力学模型,分析并揭示了顶板的弯矩和挠度分布特征及规律,提出了基于煤巷基础刚度效应的"控帮护巷"支护原理:通过加强两帮支护提高锚固煤体的基础刚度,控帮支护的直接控制两帮煤体的变形和破坏,并进一步通过基础刚度效应改善整个巷道围岩的应力状态,抑制顶底板变形破坏,提高围岩承载能力和稳定性。通过数值模拟分析与现场工程试验,对基础刚度效应和"控帮护巷"原理进行了分析和验证。研究表明:在两帮垂直集中应力作用下,巷帮煤体压缩变形明显,顶板岩层随基础变形而弯曲下沉,两帮基础刚度对顶板变形量影响显著,是顶板变形的关键影响因素;在顶板支护相同的条件下,加强两帮支护不仅使掘进和采动影响期间的两帮的塑性破坏范围和移近量显著缩小,还有效地控制了顶底板的变形破坏情况,是巷道围岩整体稳定性控制的有效途径。研究工作深化了煤巷围岩控制中对巷帮支护重要性的认识,揭示了控帮护巷的支护机理。  相似文献   

18.
以西山煤电集团西铭矿所采的8~#煤层为研究对象,通过现场实际取样,采用FLAC3D数值模拟软件进行计算,结果得出:当在陷落柱内布置"T"型交叉巷道时,垂直应力增高区面积增大,应力增高区向围岩深部转移,交叉中心向外2~5 m巷道两帮和顶板破坏深度显著增高,破坏深度达到正常水平的3~4倍。在陷落柱内布置"T"型交叉巷道时,需对交叉点中心范围内2~5 m的围岩进行加强支护,由于其破坏深度显著增加,在采用锚固支护时,为避免锚杆支护失效,应增加巷道支护设计中锚索的使用量。  相似文献   

19.
高尚  张延威 《山东煤炭科技》2024,(2):16-19+24+29
为解决73上16工作面运输巷工作期间围岩变形量大难支护等问题,采用理论计算及数值模拟验证73上16工作面运输巷支护设计参数(锚杆长度3.3 m、锚索长度6.2 m)合理性。结果表明:基于巷道松动圈理论,计算出巷道顶板松动圈高度为2.9 m,两帮松动圈范围为2.1 m,锚杆及锚索长度有效穿过松动圈范围;建立了考虑采空区压实效应的数值计算模型,通过数值模拟得出了巷道围岩顶板破坏是逐步发展的过程,未发生完全破坏的细砂岩层不能阻断砂质泥岩的破坏;采用该支护参数后,巷道顶板围岩塑性区破坏面积减少,变形量得到有效控制。经现场实践后,巷道顶板、底板、左帮及右帮最大位移量分别达到69 mm、58 mm、74 mm、78 mm,且巷道在服务期间未出现大变形情况。  相似文献   

20.
深部沿空巷道围岩主应力差演化规律与控制   总被引:1,自引:0,他引:1       下载免费PDF全文
针对千米深井沿空巷道围岩控制难题,以邢东矿2122运输巷为研究对象,采用FLAC3D模拟埋深550~1 250 m时巷道围岩主应力差与塑性区响应特征以及两帮主应力差演化规律。结果表明:① 沿空巷道顶板与实体煤帮主应力差由浅到深均呈先增高后降低至趋稳的趋势,煤柱帮主应力差呈山峰型对称分布;② 在埋深增加过程中,沿空巷道顶板和实体煤帮浅部主应力差敏感性度较小,进入中深部后变化较大;③ 随着埋深增加,两帮剪切、拉伸破坏区逐渐呈扇形分布并向深部扩展,且采空侧范围略大于巷道侧;④ 深部高应力和煤柱帮被主应力差长时间破坏使得实体煤帮主应力差峰值明显高于煤柱帮。基于此提出采用高预应力、强力支护系统进行深部沿空巷道围岩控制,并结合数值模拟研究结果确定了关键参数,现场实践表明,支护效果良好,实现了深部5 m宽煤柱沿空巷道围岩的有效控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号