首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang S  Ren Y  Lüpke G 《Applied optics》2003,42(4):715-718
We calculated the temporal and spatial characteristics of an ultrashort laser pulse propagating through a diffractive beam-shaping system that converts a Gaussian beam into a beam with a uniform irradiance profile that was originally designed for continuous waves [Proc. SPIE 2863, 237(1996)]. The pulse front is found to be considerably curved for a 10-fs pulse, resulting in a temporal broadening of the pulse that increases with increasing radius. The spatial intensity distribution deviates significantly from a top-hat profile, whereas the fluence shows a homogeneous radial distribution.  相似文献   

2.
Transverse wakefield effects in the high-gradient accelerating structure of the two-beam accelerator (TBA) [1–3] are analyzed theoretically using three different models. The first is a very simple two-particle model due to Wilson [4]; the second, due to Chao et al. [5], is for a beam with uniform charge distribution, constant betatron wavelength, and a linear wake approximation. Both of these models give analytic scaling laws. The third model has a Gaussian beam (represented by 11 superparticles), energy variation across the bunch, acceleration, variation of betatron focusing with energy, and variation of the wakefield from linearity. The three models are compared, and the third model is used to explore the wakefield effects when accelerator parameters such as energy, energy spread, injection energy, accelerating gradient, and betatron wavelength are varied. Also explored are the sensitivity of the beam to the wakefield profile to the longitudinal charge distribution. Finally, in consideration of wakefield effects, possible parameters of a TBA are presented.  相似文献   

3.
4.
The structure of the laser wakefield is analyzed for wide and narrow (in comparison with plasma wavelength) plasma channels with parabolic in radial direction plasma density distributions. The results of analytical theory are confirmed by the self-consistent nonlinear numerical modeling of laser pulse propagation and wakefield generation. In narrow plasma channels the accelerating longitudinal component of the wakefield decreases rapidly with the distance from a laser pulse. This makes possible a short single electron bunch acceleration even if the injected electron beam is much longer than a plasma wavelength.  相似文献   

5.
Xu B  Coello Y  Lozovoy VV  Dantus M 《Applied optics》2010,49(32):6348-6353
A fast and automated approach to measuring two-photon fluorescence excitation (TPE) spectra of fluorophores with high resolution (~2 nm) by pulse shaping ultrabroad-bandwidth femtosecond laser pulses is demonstrated. Selective excitation in the range of 675-990 nm was achieved by imposing a series of specially designed phase and amplitude masks on the excitation pulses using a pulse shaper. The method eliminates the need for laser tuning and is, thus, suitable for non-laser-expert use. The TPE spectrum of Fluorescein was compared with independent measurements and the spectra of the pH-sensitive dye 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) in acidic and basic environments were measured for the first time using this approach.  相似文献   

6.
The compression and acceleration of an external electron bunch into the laser wakefield is studied using 3D modeling with the LAPLAC code and compared to analytical predictions. It is shown, for a laser propagating in a plasma channel, that the nonlinear laser pulse dynamics together with the finite laser spot size influence the electron bunch compression and acceleration due to the reduction of the laser pulse group velocity. The transverse bunch dynamics and loading effect determine the final bunch charge and density and restrict the compressed sizes of the trapped and accelerated electron bunch. The dynamics of the electron bunch are illustrated with a set of parameters where the accelerated bunch acquires an energy of the order of 2 GeV, and 1% energy spread with sub-micron sizes.  相似文献   

7.
A laser wakefield electron acceleration experiment has been set-up at Ecole Polytechnique. An electron beam with 3 MeV total energy is injected in a plasma wave generated by laser wakefield using the new LULI CPA laser (400 fs [FWHM], I < 1017 W/cm2). The first results show an effective acceleration of the order of 1 MeV, with a maximum when the electron density is close to the optimum value for which the laser pulse length is about half the plasma wavelength.  相似文献   

8.
Experiments of high energy gain laser wakefield acceleration   总被引:2,自引:0,他引:2  
The wakefield acceleration of electrons has a great potential for the future accelerator because of its high accelerating field gradient. We have obtained over 100 MeV acceleration gain by the wakefield generated by a 2 TW Ti: sapphire laser system. In the acceleration experiment, the 17 MeV electrons from a linac were used for the injection beam. The synchronization between the RF signal and the laser pulse was achieved within the time jitter of 3.7 ps. Due to the self-focusing and ionization, a long propagation length and high field gradient were realized. The self-focusing effect of the laser was confirmed by the laser spotsize measurement along the beam axis. The plasma density oscillation was measured by using the frequency domain interferometry. The acceleration gain expected from the plasma density measurement was consistent with the result of the acceleration experiments.  相似文献   

9.
We derive an expression for the maximum energy gain of an accelerated electron, in the limit that the plasma wave created by a laser wake is linear both along the longitudinal direction and in the transverse plane, and with a maximum laser power lower than the critical power for relativistic self-focusing. With an available power of 300 TW, the energy gain is of 1 GeV.  相似文献   

10.
Jia J  Zhou C  Sun X  Liu L 《Applied optics》2004,43(10):2112-2117
The superresolution technique is well known for its ability to compress the central diffractive spot that is smaller than the Airy diffractive spot. In this paper, we extend the superresolution technique for different laser beam shaping. A complete set of superresolution diffractive elements is developed for the flat-top beam shaping, the single-circle beam shaping, and the novel circular Dammann grating. Five phase plates, corresponding to each of its applications, have been made by use of micro-optics technology. Experiments that are presented are in good agreement with the theoretical results. The superresolution technique presented in this paper should be highly interesting for the wide applications of laser beam shaping.  相似文献   

11.
Cui B  Wu L  Chou SY 《Nanotechnology》2008,19(34):345303
The authors have developed an approach to fabricate sharp and high aspect ratio metal tips using nanosecond pulse laser melting. A quartz wafer covered with a thin chromium (Cr) film was placed on top of a second wafer with a sub-micrometer gap between them and the Cr film facing the second wafer. Then an excimer laser pulse (308?nm wavelength, 20?ns pulse duration) was shone from the back of the quartz wafer and melted the Cr film momentarily (several hundred nanoseconds). It is found that the molten Cr films can self-form discrete metal pillars connecting the two wafers. After separating the two wafers, nanotips were formed at the broken pillar necks. The sharpest tip achieved has an apex diameter 10?nm and height 180?nm. The self-formation of Cr pillars between the two wafers was attributed to the attractive electrostatic force caused by the work function difference of two wafers that were in close proximity. This technique could be extended to other metals, and a periodic uniform tip array could be obtained by pre-patterning the metal into identical isolated mesas and precisely controlling the gap between the two wafers.  相似文献   

12.
Energy directly acquired by an electron from the laser electromagnetic field is quadratically proportional to the laser wavelength. Exploiting this feature, the emerging terawatt picosecond (TWps) CO2 lasers, having an order of magnitude longer wavelength than the well-known table-top terawatt (T3) picosecond solid state lasers, offer new opportunities for strong-field physics research. Laser accelerators serve as an example where application of the new class of lasers will result in enhancement in gas ionization, plasma wave excitation, and relativistic self-focusing. Ponderomotively strong CO2 laser permits a 100 times reduction in the plasma density without impeding the acceleration. The improved performance of the low-pressure laser wakefield accelerators (LWFA) is potentially due to higher electric charge per accelerated bunch and better monochromaticity. The multi-kilowatt average power, high repetition rate capability of the TWps-CO2 laser technology opens new opportunities in development of compact, 1 m long, GeV accelerators and < 1 km long high-luminosity multi-stage LWFA colliders of the TeV scale. The first TWps-CO2 laser is under construction at the BNL Accelerator Test Facility (ATF).  相似文献   

13.
Attempts to increase the resolution of ultrasound imaging apparata resulted in the desire for precise control over the shape of transmitted ultrasonic pulses. The shape of transmitted ultrasonic pulses can be controlled when a transducer is excited by a signal corresponding to a convolution filter. This article discusses a method of precise ultrasonic pulse shaping using lag filters. A lag filter fl(t) is a convolution filter calculated for a time-shifted desired output waveform w(t): w(t) → w(t − l). An optimal lag filter is selected by trying all possible values of lag l and selecting a filter with the best performance. The filter coefficients can be calculated using a Fourier transform or least-squares criterion. The quality-limiting factors of the pulse shaping are the length of the filter and the accuracy of the actual excitation signal. The improvement of the pulse-shaping quality can be achieved by accounting for the amplifier transfer function or by accurate DAC-values-to-voltage mapping. The analysis of the experimental results indicates that the developed ultrasonic pulse-shaping technique provides a means for flexible control over the transmitted ultrasonic pulse waveform and frequency. The presented pulse-shaping technique is specially developed for cost effective ultrasound imaging devices utilizing a simplified beamformer composed of a single pair of input/output amplifiers. © 1999 John Wiley & Sons, Inc. Int J Imaging Syst Technol 10, 397–403, 1999  相似文献   

14.
Ngo NQ 《Applied optics》2006,45(26):6785-6791
The design and analysis of an Nth-order optical integrator using the digital filter technique is presented. The optical integrator is synthesized using planar-waveguide technology. It is shown that a first-order optical integrator can be used as an optical dark-soliton detector by converting an optical dark-soliton pulse into an optical bell-shaped pulse for ease of detection. The optical integrators can generate an optical step function, staircase function, and paraboliclike functions from input optical Gaussian pulses. The optical integrators may be potentially used as basic building blocks of all-optical signal processing systems because the time integrals of signals may sometimes be required for further use or analysis. Furthermore, an optical integrator may be used for the shaping of optical pulses or in an optical feedback control system.  相似文献   

15.
The staged electron laser acceleration (STELLA) experiment demonstrated staging between two laser-driven devices, high trapping efficiency of microbunches within the accelerating field and narrow energy spread during laser acceleration. These are important for practical laser-driven accelerators. STELLA used inverse free electron lasers, which were chosen primarily for convenience. Nevertheless, the STELLA approach can be applied to other laser acceleration methods, in particular, laser-driven plasma accelerators. STELLA is now conducting experiments on laser wakefield acceleration (LWFA). Two novel LWFA approaches are being investigated. In the first one, called pseudo-resonant LWFA, a laser pulse enters a low-density plasma where nonlinear laser/plasma interactions cause the laser pulse shape to steepen, thereby creating strong wakefields. A witness e-beam pulse probes the wakefields. The second one, called seeded self-modulated LWFA, involves sending a seed e-beam pulse into the plasma to initiate wakefield formation. These wakefields are amplified by a laser pulse following shortly after the seed pulse. A second e-beam pulse (witness) follows the seed pulse to probe the wakefields. These LWFA experiments will also be the first ones driven by a CO(2) laser beam.  相似文献   

16.
This work deals with improving the resolution of ultrasonic ranging systems by means of preshaping the transmitter drive signals to achieve low transient acoustic pulses. As ultrasonic transducers are operated at a relatively high nominal frequency and quality factor, feedforward strategy is among the most efficient means to generate the low transient acoustic pulses. In this work, a digital signal processor and a field programmable gate array synthesize the transmitter drive signal to emit low transient pulses which are then applied to the detection of surface features. Both simulation and experiment results confirm an improved spatial detection resolution due to the lower acoustic transient interference. The drive signal synthesis process is also simpler than the conventional modulation method and should result in lower cost of implementation.  相似文献   

17.
Abstract

Phase-matching techniques are widely used to retrieve nonlinear optical signals of electronic and vibrational transitions. Here, collinear, phase cycled pulses are used to collect the same nonlinear signals in direct analogy to nuclear magnetic resonance studies. An acousto-optic pulse shaper is used to create suitable sequences of ultrashort pulses with arbitrary relative delays and phases. The rapid update rate of the acousto-optic modulator allows for impressive data rates.  相似文献   

18.
Abstract

We address the problem of shaping the intensity distribution of a highly directional partially coherent field, such as an excimer laser beam, by means of diffractive optics. Our theoretical analysis is based on modelling the multi-transverse-mode laser beam as a Gaussian Schell-model beam. It is shown numerically that a periodic element, which is unsuitable for the shaping of a coherent laser beam, works well with an excimer laser beam because of its partial spatial coherence. The conversion of an approximately Gaussian excimer laser beam into a flat-top beam in the Fourier plane of a lens is demonstrated with a diffractive beam shaper fabricated as a multilevel profile in SiOl by electron-beam lithography and proportional reactive-ion etching.  相似文献   

19.
二元光学在强激光波面整形中的应用   总被引:4,自引:0,他引:4  
文章首先介绍了二元光学波面整形器件的理论基础。在分析GS、YG等正反迭代算法存在问题的基础上,提出三种优化算法,即全局/局部联合搜索算法(GLUSA)、爬山-模拟退火混合算法及多分辨率的混合优化算法。以惯性约束核聚变中光束匀滑为例,进行了二元光学器件的位相设计,获得了良好的位相结构与焦斑性能。采用旋转镂空掩膜板制作了准连续位相器件,并利用CCD与多种光强衰减片进行焦斑光强测量。实验结果表明:获得了较好的顶部均匀性、陡边、小旁瓣、高主瓣能量利用率以及光斑中心没有锐脉冲的光强分布。  相似文献   

20.
After temporal amplitude modulation of a spectrally incoherent optical source the averaged intensity profile at the so-called temporal far-zone regime coalesces with a magnified replica of the spectral density function of the source. This has provided the basis for the generalization of the frequency-to-time mapping technique in the partially coherent case. Based on this fact, temporal intensity waveform generation is demonstrated by spectral filtering the incoherent source before the temporal modulation stage. We refer to this technique as full incoherent pulse shaping. Although only the average intensity of the output signal is properly shaped, intensity fluctuations between the different realizations of the output shaped waveform are shown to be small in the practical situation. Finally, we provide some computer simulations concerning arbitrary picosecond pulse generation from an amplified spontaneous emission source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号