首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kuhn KJ  Dyke JT 《Analytical chemistry》1996,68(17):2890-2896
A renewable-reagent fiber-optic HNO(3) sensor was developed for HNO(3) measurement in the 0.1-10.0 M range. The HNO(3) sensor employs a tubular Nafion cation-exchange membrane to extract acid species from an external HNO(3) sample into an internal flowing reagent solution. In high-concentration HNO(3) samples, incomplete HNO(3) dissociation results in a significant concentration of neutral HNO(3) species in addition to protons. As both neutrals and protons are potentially membrane-permeable species, various reagent compositions were tested to examine the contributions of both acid transfer mechanisms. Continuous reagent flow limited internal acid accumulation and transferred reagent to the sensor optical detection cell. All reagent compositions included cresol red as a colorimetric indicator, which was measured within the sensor detection cell. Careful fiber-optic alignment provided sufficient light throughput in a backscatter illumination mode to allow use of a photodiode array detector for visible spectral acquisition. The use of Ca(2+) as a reagent countercation produced notable reductions in HNO(3) sensor response to interferent cations and temperature changes. Sensor measurement of HNO(3) samples in the tested concentration range produced average relative standard deviations of less than 0.4%. Control over reagent flow rate should allow for extension of the HNO(3) sensor measurement range to 16.0 M HNO(3).  相似文献   

2.
An enzyme glucose sensor with an expanded dynamic range was constructed using a novel strategy. This strategy was based on a new concept of utilizing protein-engineered enzymes with a different Michaelis constant, which allows for the expanded dynamic range. We used the engineered Escherichia coli pyrroloquinoline quinone glucose dehydrogenase (PQQGDH) of which His775 was substituted for Asp which showed an increased Km value (25-fold). We first constructed the composite colorimetric analytical system employing the wild-type PQQGDH and His775Asp and evaluated its dynamic range. The composite colorimetric analytical system was constructed and showed a wide dynamic range of 0.5-30 mM with less than +/-5% error. The composite colorimetric analytical system, an extended-range colorimetric analytical system, enabled the determination of the concentration of glucose over a 30-fold range that could not have been achieved using the single colorimetric analytical system. Furthermore, we have demonstrated the composite amperometric glucose sensor employing the combination of His775Asn and His775Asp. The extended-range glucose sensor acquired not only the expanded dynamic range (3-70 mM) that covered both dynamic ranges of the single enzyme sensors but also the narrower substrate specificity of glucose due to the inherited property of engineered enzymes.  相似文献   

3.
This communication reports an efficient visual detection method of Cu2+ by L-cysteine functionalized gold nanoparticles in aqueous solution. Upon exposure to Cu2+, the gold nanoparticle solution changed from red to blue, in response to surface plasmon absorption of dispersed and aggregated nanoparticles. This colorimetric sensor allows a rapid quantitative assay of Cu2+ down to the concentration range of 10(-5) M. Recognition of Cu2+ and formation of the aggregates are proposed to occur via a 2 : 1 sandwich complex between L-cysteine and Cu2+.  相似文献   

4.
Kong H  Liu D  Zhang S  Zhang X 《Analytical chemistry》2011,83(6):1867-1870
Cross-reactive sensor arrays, known as "chemical noses", offer an alternative to time-consuming analytical methods. Here, we report a sensor array based on nanomaterial-assisted chemiluminescence (CL) for protein sensing and cell discrimination. We have found that the CL efficiencies are improved to varied degrees for a given protein or cell line on catalytic nanomaterials. Distinct CL response patterns as "fingerprints" can be obtained on the array and then identified through linear discriminant analysis (LDA). The sensing of 12 kinds of proteins at three concentrations, as well as 12 types of human cell lines among normal, cancerous, and metastatic, has been performed. Compared with most fluorescent or colorimetric approaches which rely on the strong interaction between analytes and sensing elements, our array offers the advantage of both sensitivity and reversibility.  相似文献   

5.
In this paper, we report on the preparation of novel cross-reactive optical microsensors for high-speed detection of low-level explosives and explosives-like vapors. Porous silica microspheres with an incorporated environmentally sensitive fluorescent dye are employed in high-density sensor arrays to monitor fluorescence changes during nitroaromatic compound (NAC) vapor exposure. The porous silica-based sensor materials have good adsorption characteristics, high surface areas, and surface functionality to help maximize analyte-dye interactions. These interactions occur immediately upon vapor exposure, i.e., in less than 200 ms and are monitored with a high-speed charge-coupled device camera to produce characteristic and reproducible vapor response profiles for individual sensors within an array. Employing thousands of identical microsensors permits sensor responses to be combined, which significantly reduces sensor noise and enhances detection limits. Normalized response profiles for 1,3-dinitrobenzene (1,3-DNB) are independent of analyte concentration, analyte exposure time, or sensor age for an array of one sensor type. Explosives-like NACs such as 2,4-dinitrotoluene and DNB are detected at low part-per-billion levels in seconds. Sensor-analyte profiles of some sensor types are more sensitive to low-level NAC vapor even when in a higher organic vapor background. We show that single-element arrays permit the detection of low-level nitroaromatic compound vapors because of sensor-to-sensor reproducibility and signal averaging.  相似文献   

6.
A ceramic thermocouple based on indium-tin-oxide (ITO) thin films is being developed to measure the surface temperature of gas turbine engine components employed in power and propulsion systems that operate at temperatures in excess of 1500/spl deg/C. By fabricating ITO elements with substantially different charge carrier concentrations, it was possible to construct a robust ceramic thermocouple. A thermoelectric power of 6.0 /spl mu/V//spl deg/C, over the temperature range 25-1250/spl deg/C, was realized for an unoptimized ITO ceramic thermocouple. The charge carrier concentration difference in the legs of the ITO thermocouple was established by r.f. sputtering in oxygen-rich and nitrogen-rich plasmas. SEM micrographs revealed that after high-temperature exposure, the surfaces of the nitrogen prepared ITO films exhibited a partially sintered microstructure with a contiguous network of ITO nanoparticles. Thermal cycling of ITO films in various oxygen partial pressures showed that the temperature coefficient of resistance was nearly independent of oxygen partial pressure at temperatures above 800/spl deg/C and eventually became independent of oxygen partial pressure after repeated thermal cycling below 800/spl deg/C. Based on these results, a versatile ceramic sensor system has been envisioned where a ceramic thermocouple and strain sensor can be combined to yield a multifunctional ceramic sensor array.  相似文献   

7.
Spin-coated layers of two metalloporphyrin derivatives (2-nitro-5,10,15,20-tetraphenylporphyrinato) zinc (II) (ZnTPP-NO2) and (2,3-dioxo-5,10,15,20-tetraphenylporphyrinato) zinc (II) (ZnTPPO) have been used as sensing materials for the detection of volatile organic compounds (VOCs) in the UV-vis spectral range. An optical characterization in controlled atmosphere has been carried out by acquiring the absorption spectra of the two metalloporphyrin derivatives both in dry air and in the presence of different VOCs. The results of the optical VOCs sensing tests show interesting differentiation in the optical responses depending on the metal ion and the peripheral substituent of the macromolecules. A 2 × 1 colorimetric array detection of VOCs has been achieved using ZnTPP-NO2 and ZnTPPO as immobilized on a reverse phase silica gel. The gas molecules were detected by the colorimetric array and the obtained responsive images were decomposed to RGB color components using a CMOS image sensor. RGB color components change patterns obtained from the colorimetric array give a good identification of VOCs. Morphological characterization of the sensing layer was also performed by scanning electron microscopy.  相似文献   

8.
A new approach to general sensors for odors and volatile organic compounds (VOCs) using thin films of chemically responsive dyes as a colorimetric sensor array is described. This optoelectronic "nose," by using an array of multiple dyes whose colors change based on the full range of intermolecular interactions, provides enormous discriminatory power among odorants in a simple device that can be easily digitally imaged. High sensitivities (ppb) have been demonstrated for the detection of biologically important analytes such as amines, carboxylic acids, and thiols. By the proper choice of dyes and substrate, the array can be made essentially nonresponsive to changes in humidity.  相似文献   

9.
Yang F  Jung D  Penner RM 《Analytical chemistry》2011,83(24):9472-9477
The electrical resistance, R, of an array of 30 palladium nanowires is used to detect the concentration of dissolved hydrogen gas (H(2)) in transformer oil over the temperature range from 21 to 70 °C. The palladium nanowire array (PdNWA), consisting of Pd nanowires ~100 nm (width), ~20 nm (height), and 100 μm (length), was prepared using the lithographically patterned nanowire electrodeposition (LPNE) method. The R of the PdNWA increased by up to 8% upon exposure to dissolved H(2) at concentrations above 1.0 ppm and up to 2940 ppm at 21 °C. The measured limit-of-detection for dissolved H(2) was 1.0 ppm at 21 °C and 1.6 ppm at 70 °C. The increase in resistance induced by exposure to H(2) was linear with [H(2)](oil)(1/2) across this concentration range. A PdNWA sensor operating in flowing transformer oil has functioned continuously for 150 days.  相似文献   

10.
An electrochemical sensor is built using vertically grown multi-walled carbon nanotubes (MWNTs) micro-array to detect methanol concentration in water. This study is done for the potential use of the array as methanol sensor for portable units of direct methanol fuel cells (DMFCs). Platinum (Pt) nanoparticles electro-deposited CNTs (Pt/CNTs) electrode shows high sensitivity in the measurement of methanol concentration in water with cyclic voltammetry (CV) measurement at room temperature. Further investigation has also been undertaken to measure the concentration by changing the amount of the mixture of methanol and formic acid in water. We compared the performance of our micro array sensor built with Pt/CNTs electrodes versus that of Pt wire electrode using CV measurement. We found that our Pt/CNTs array sensor shows high sensitivity and detects methanol concentrations in the range of 0.04 M to 0.10 M. In addition, we found that co-use of formic acid as electrolyte enables us to measure up to 1.0 M methanol concentration.  相似文献   

11.
《IEEE sensors journal》2006,6(4):861-866
A low-cost chemical sensor comprising surface-mount light-emitting diodes (LEDs) has been developed for colorimetric gas detection. The device consists of a pair of LEDs connected to a simple PIC microcontroller circuit and in the most basic form, requires the use of only two input–output (I/O) pins on the chip. The key features of this sensor are the use of a LED rather than a photodiode for light detection and an all-digital light detection protocol that leads to a reduction in cost and power consumption by avoiding the need for an analog-to-digital converter. The surface-mount diodes employed are more compact than standard LEDs and are more amenable to coating by solid-state sensor films. Results from sensors employing a chemochromic ammonia sensitive film are presented, and the detection of this target is demonstrated in the parts-per-million range. The configuration is applicable to a wide range of colorimetric gas sensing materials.  相似文献   

12.
A sensor array for analyzing hydrogen and ammonia gas mixtures in humid air has been developed, built into a rugged system, and calibrated for laboratory testing. The sensor array is comprised of four chemically sensitive field-effect transistors (CHEMFETs). Chemically sensitive layers for the sensors were developed and tested using a Kelvin probe. A combination of catalytic and noncatalytic thin layers (palladium and polyaniline) was selected for the four-sensor array. The work function responses of the CHEMFET sensor array to mixtures of hydrogen, ammonia, and humid air were measured. Chemometric multivariate methods, linear and nonlinear partial least squares, were used for the calibration of the sensor array using gas mixtures in the concentration range from 0 to 10?000 ppm hydrogen and ammonia in humid air. The sensor array for ammonia showed good sensitivity, selectivity, response time, and stability and is recommended for field deployment. In contrast, the sensor array for hydrogen, though highly sensitive to hydrogen, demonstrated inadequate stability, requiring further development before deployment is recommended.  相似文献   

13.
A study was conducted to demonstrate the effectiveness of a wet abrasive blasting technology to remove lead-based paint from exterior wood siding and brick substrates as well as to evaluate the effectiveness of two waste stabilization technologies to stabilize the resulting blast media (coal slag and mineral sand) paint debris thereby reducing the leachable lead content. The lead-based paint removal technology effectiveness was determined by the use of an X-ray fluorescence (XRF) spectrum analyzer (L- and K-shell). The effectiveness of the technologies to stabilize the debris was evaluated through the toxicity characteristic leaching procedure (TCLP). Wet abrasive blasting effectively removed the lead-based paint coating from both the wood and brick substrates to below the US Department of Housing and Urban Development Guideline (1mg/cm(2)) with no minimal or no damage to the underlying substrates (P<0.0001). The mean area air levels of lead-containing particulate generated during paint removal were significantly below the personal exposure limit (PEL) (P<0.0001). However, the mean personal breathing zone lead levels were approximately three times higher than the PEL. Neither of the two stabilization technologies consistently stabilized the resultant paint debris to achieve a leachable lead content below the RCRA regulatory threshold of <5 mg/l.  相似文献   

14.
This work explores the possibility to discriminate analytes based on their nonequilibrium signals in polymer-coated capacitive chemical microsensors. The analyte uptake in the chemically sensitive polymer layers of 3-7-microm thickness has been analyzed using a diffusion model and the dynamic sensor response data. The shapes of the response profiles have been calculated analytically. Despite the simplifications in the model, the observed transient signal profiles could be described accurately. Comparison of the measured diffusion coefficients (on the order of 10(-12) m2/s) with literature values measured at similar concentration levels showed good agreement. Concentration-independent diffusion coefficients for several analyte/polymer combinations (poly(etherurethane)/all analytes; poly(epichlorohydrin)/alcohols) as well as slightly concentration-dependent diffusion coefficients (poly(epichlorohydrin)/toluene or ethyl cellulose/toluene) have been found in the investigated concentration range of tens to hundreds of pascals gas-phase partial pressure. The diffusion times of water and the first aliphatic monohydric alcohols in the polymers are strongly correlated to their molecular size. The discrimination of these substances based on dynamic sensor data of a single sensor could be demonstrated. In particular, the analysis of mixtures of analytes with similar chemical behavior (water/ethanol or methanol/ethanol) by means of analyzing the response profile of single-exposure steps or by applying a series of decreasingly long alternating target gas exposure and carrier gas exposure steps has been performed.  相似文献   

15.
In this study, the concentrations of trace elements contained in solid barbeque (BBQ) charcoal products have been investigated. Eleven brands of charcoal products were analyzed, consisting of both Korean (3 types) and imported products (eight types from three countries) commonly available in the Korean market places. The concentrations of trace metals in solid charcoal varied widely across metal types and between samples with the overall range of 5 μg kg(-1) (As) to 118 mg kg(-1) (Zn). The patterns of metal distribution between different products appeared to be affected by the properties of raw materials and/or the processes involved in their production. Although concentrations of certain trace metals were significantly high in certain charcoal samples, their emission concentrations were below legislative guidelines (e.g., the permissible exposure limit (PEL) set by the Occupational Safety and Health Administration (OSHA)). In light of the potential harm of grilling activities, proper regulation should be considered to control the use of BBQ charcoal from a toxicological viewpoint to help reduce the potential health risks associated with its use.  相似文献   

16.
A novel resonant cantilever sensor system for liquid-phase applications is presented. The monolithic system consists of an array of four electromagnetically actuated cantilevers with transistor-based readout, an analog feedback circuit, and a digital interface. The biochemical sensor chip with a size of 3 mm x 4.5 mm is fabricated in an industrial complementary metal oxide semiconductor (CMOS) process with subsequent CMOS-compatible micromachining. A package, which protects the electrical components and the associated circuitry against liquid exposure, allows for a stable operation of the resonant cantilevers in liquid environments. The device is operated at the fundamental cantilever resonance frequency of approximately 200 kHz in water with a frequency stability better than 3 Hz. The use of the integrated CMOS resonant cantilever system as a chemical sensor for the detection of volatile organic compounds in liquid environments is demonstrated. Low concentrations of toluene, xylenes, and ethylbenzene in deionized water have been detected by coating the cantilevers with chemically sensitive polymers. The liquid-phase detection of analyte concentrations in the single-ppm range has been achieved. Furthermore, the application of this sensor system to the label-free detection of biomarkers, such as tumor markers, is shown. By functionalizing the cantilevers with anti-prostate-specific antigen antibody (anti-PSA), the corresponding antigen (PSA) has been detected at concentration levels as low as 10 ng/mL in a sample fluid.  相似文献   

17.
The "limit of recognition" (LOR) has been defined as the minimum concentration at which reliable individual vapor recognition can be achieved with a multisensor array, and methodology for determining the LORs of individual vapors probabilistically on the basis of sensor array response patterns has been reported. This article explores the problems of defining and evaluating LORs for vapor mixtures in terms of the absolute and relative component vapor concentrations, where the mixture must be discriminated from those component vapors and from the subset of possible lower-order component mixtures. Monte Carlo simulations and principal components regression analyses of an extant database of calibrated responses to a set of 16 vapors from an array of 6 diverse polymer-coated surface acoustic wave sensors are used to illustrate the approach and to examine trends in LOR values among the 120 possible binary mixtures and 560 possible ternary mixtures in the data set. At concentrations exceeding the LOD, 89% of the binary mixtures could be reliably recognized (<5% error) over some composite concentration range, while only 3% of the ternary mixtures could be recognized. Most binary mixtures could be recognized only if the constituent vapor relative concentration ratio, defined in terms of multiples of the LOD for each vapor, was < or =20. Correlations with the Euclidean distance(s) separating the normalized constituent vapor response vectors allow reasonably accurate predictions of the limiting recognizable mixture composition ranges for binary and ternary cases. Results are considered in the context of using microsensor arrays for vapor detection and recognition in microanalytical systems.  相似文献   

18.
Colorimetric sensor arrays for volatile organic compounds   总被引:2,自引:0,他引:2  
The development of a low-cost, sensitive colorimetric sensor array for the detection and identification of volatile organic compounds (VOCs) is reported. Using an array composed of chemoresponsive dyes, enormous discriminatory power is possible in a simple device that can be imaged easily with an ordinary flatbed scanner. Excellent differentiation of closely related organic compounds can be achieved, and a library of 100 VOCs is presented. The array discriminates among VOCs by probing a wide range of intermolecular interactions, including Lewis acid/base, Br?nsted acid/base, metal ion coordination, hydrogen bonding, and dipolar interactions. Importantly, by proper choice of dyes and substrate, the array is essentially nonresponsive to changes in humidity.  相似文献   

19.
Kaye P  Hirst E  Wang-Thomas Z 《Applied optics》1997,36(24):6149-6156
A laser light-scattering instrument has been designed to facilitate the real-time detection of potentially hazardous respirable fibers, such as asbestos, within an ambient environment. The instrument captures data relating to the spatial distribution of light scattered by individual particles in flow by use of a dedicated multielement photodiode detector array. These data are subsequently processed with an artificial neural network that has previously been trained to recognize those features or patterns within the light-scattering distribution that may be characteristic of the specific particle types being sought, such as, for example, crocidolite or chrysotile asbestos fibers. Each particle is thus classified into one of a limited set of classes based on its light-scattering properties, and from the accumulated data a particle concentration figure for each class may be produced and updated at regular intervals. Particle analysis rates in excess of 103 /s within a sample volume flow rate of 1 l /min are achievable, offering the possibility of detecting fiber concentrations at the recommended maximum exposure limit of 0.1 fibers /ml within a sampling period of a few seconds.  相似文献   

20.
This paper describes the design, modeling, and experimental characterization of an electrochemical sensor array for on-line monitoring of fermentor conditions in both miniaturized cell assays and in industrial scale fermentations. The viable biomass concentration is determined from impedance spectroscopy. As a miniaturized electrode configuration with high cell constant is applied, the spectral conductivity variation is monitored instead of the permittivity variation. The dissolved oxygen concentration is monitored amperometrically using an ultramicroelectrode array, which is shown to have negligible flow dependence. pH is monitored using an ion-sensitive field effect transistor (ISFET), and a platinum thermistor is included for temperature measurements. All sensors were shown to be sufficiently accurate within the range relevant to yeast fermentations. The sensor array is shown to be very stable and durable and withstands steam-sterilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号