首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Biogenic amines and nucleotide degradation products of sea bream stored in ice, wrapped in aluminium foil (WAF) and in cling film (WCF) at 2±1 °C were investigated by using a rapid HPLC method. Results obtained from this study showed that for household purposes packing fish in different materials has a little effect on the biogenic amines formation and nucleotide degradation products. The highest decrease of IMP content was observed for sea bream in WAF, followed by WCF. INO values showed a fluctuation and remained below the levels of 5.5 μmol/g for all storage conditions. Hx value constantly increased with the storage time during chilled storage. For all of the storage condition, K and Ki value increased linearly with storage time. At the end of the storage period, K, Ki, H and G value reached 60–76%, 65–81%, 30–54% and 89–173%, respectively. Among biogenic amines, (trimetylamine) TMA, putrescine, cadaverine, spermidine, spermine, tryptamine, tyramine, β-phenylalanine and histamine were detected during storage period. TMA and putrescine were observed to increase linearly during storage period. Histamine production was only found at the end of storage period. The highest histamine values for fish wrapped in aluminium foil were 6.4 mg/100 g and fish wrapped in cling film was 4.6 mg/100 g.  相似文献   

2.
Slurry ice, a biphasic system consisting of small spherical ice crystals surrounded by seawater at subzero temperature, was evaluated as a new chilled storage method for whole sea bass (Dicentrarchus labrax) a sparidae fish species of remarkable commercial interests. Four different group of chilling methods were used in this study; in slurry ice packaged on board (group A), in slurry ice packaged on company after 2 h (group B), slurry + flake ice packaged on board (group C) and only flake ice packaged on board (group D). The effect of this advanced system at the beginning of storage on quality losses and the shelf-life of aquacultured sea bass was evaluated. Mesophilic counts for sea bass exceeded 7 log cfu/g, which is considered the maximum level for acceptability for freshwater and marine fish after 13 days for groups C and D, and 15 days for groups A and B. At day 15; total volatile basic nitrogen (TVB-N) values of groups A–D reached the legal limits (35 mg/100 g set for TVB-N) for consumption. According to the results of sensory analyses, up to day 11, all the groups were determined as ‘acceptable’ but on day 13, the groups A–D were no longer acceptable. The main negative aspect related to quality loss in slurry ice group corresponded to the appearance of eyes and gills. Using slurry ice at the beginning of packaging did not affect the shelf-life of sea bass stored at 4 °C.  相似文献   

3.
The effect of ungutting on microbiological, chemical and sensory properties of aquacultured sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) stored in ice were studied. The total viable mesophilic and psychrophilic bacterial counts increased throughout the storage period of ungutted sea bream and sea bass. Mesophilic counts of ungutted sea bream and sea bass reached 7.39 log cfu/g and 7.26 log cfu/g after 9 days. At the end of the storage period of 14 days; TVB-N, TBA, TMA-N values of ungutted sea bream were determined as 37.5±0.51 mg/100 g, 3.82±0.03 mg MA/kg, 7.73±0.25 mg/100 g, respectively. TVB-N, TBA, TMA-N values of ungutted sea bass were reached 35.4±0.9 mg/100 g, 3.75±0.81 mg MA/kg, 6.94±0.08 mg/100 g on day 14th, respectively. Result of this study indicates that the shelf life of whole ungutted sea bream stored in ice as determined by the overall acceptability sensory scores, chemical quality and microbiological data is 12, 9 and 9 days, respectively. Each chemical, sensory and microbiological results for sea bream showed us that there was a correlation and similarity, and day 9 was the beginning of spoilage. Whole ungutted sea bass stored in ice as chemical results for sea bass showed us that day 7 was the beginning of spoilage and for sea bream day 9 was the beginning of spoilage.  相似文献   

4.
The sensory characteristics, chemical freshness indicator contents, and microbial counts (total aerobe, psychrotrophic bacteria, H2S-producing bacteria, and Pseudomonas spp.) of whole un-gutted and gutted sea bass stored in ice were compared. Results of this study indicated that the acceptability quality of whole and gutted sea bass as determined by sensorial data is 11 days, respectively. No significant differences (p > 0.05) were found in the level of sensory score between whole and gutted sea bass samples. Total volatile basic nitrogen (TVB-N) values showed no significant increase for whole and gutted sea bass during storage. Trimethylamin (TMA-N) values of whole and gutted sea bass increased very slowly, reaching final values of 3.94 and, 3.38 mg/100g, respectively (day 13). Development of initial decomposition (after 7 days) occurred when bacterial counts were > 4 log CFU/g. Microbial counts showed a significant increase for whole and gutted sea bass during storage. Significant differences (p < 0.05) were found in the microbial counts between whole and gutted sea bass samples. This difference, may be attributed either to gutting procedures, which most probably were the cause of cross-contamination of fish or to the significantly higher fish flesh surface area exposed to environmental microbial contamination in the case of gutted fish.  相似文献   

5.
Microbiological, chemical and physical changes of sea bass slices wrapped with gelatin film incorporated with 25% (w/w) lemongrass essential oil (LEO) during storage of 12 days at 4 °C were investigated. Sea bass slices wrapped with LEO film had the retarded growth of lactic acid bacteria (LAB), psychrophilic bacteria and spoilage microorganisms including H?S-producing bacteria and Enterobacteriaceae throughout storage of 12 days in comparison with the control and those wrapped with gelatin film without LEO (G film) (P<0.05). Lowered changes of colour, K value, total volatile base nitrogen (TVB) and TBARS value were also found in LEO film wrapped samples, compared with those wrapped with G film and control, respectively. Therefore, the incorporation of LEO into gelatin film could enhance the antimicrobial and antioxidative properties of the film, thereby maintaining the qualities and extending the shelf-life of the sea bass slices stored at refrigerated temperature.  相似文献   

6.
The effect of gutting and ungutting on microbiological, chemical, and sensory properties of aqua-cultured sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) stored in ice were studied. The total viable mesophilic and psychrophilic bacterial counts increased throughout the storage period of gutted and ungutted sea bream and sea bass. The mesophilic counts reached 8.19 log cfu/g for ungutted sea bream and 7.93 log cfu/g for ungutted sea bass after 14 days of storage. The mesophilic counts reached 8.89 log cfu/g for gutted sea bream and 8.16 log cfu/g for gutted sea bass after 14 days of storage. On day 14 of storage the psychrophilic counts of ungutted sea bream and sea bass were 8.24 log cfu/g and 8.03 log cfu/g, respectively, and for gutted sea bream and sea bass were 8.93 and 8.22, respectively. At the end of the storage period of 14 days, TVB-N, TBA, and TMA-N values of ungutted sea bass were determined as 50.13 +/- 0.25 mg/100 g, 2.66 +/- 0.06 mg malonaldehit/kg, 9.86 +/- 0.01 mg/100 g respectively. TVB-N, TBA, and TMA-N values of ungutted sea bream reached 55.90 +/- 0.36 mg/100g, 2.51 +/- 0.21 mg malonaldehit/kg, 9.79 +/- 0.01 mg/100 g on day 14 respectively. And also at the end of the storage period of 14 days, TVB-N, TBA, and TMA-N values of gutted sea bass were determined as 48.00 +/- 0.26 mg/100 g, 2.48 +/- 0.03 mg malonaldehit/kg, 8.71 +/- 0.06 mg/100 g respectively. TVB-N, TBA, and TMA-N values of gutted sea bream reached 49.66 +/- 0.77 mg/100g, 2.64 +/- 0.07 mg malonaldehit/kg, 8.97 +/- 0.01 mg/100 g on day 14 respectively. The result of this study indicates that the shelf-life of whole ungutted sea bass and sea bream stored in ice as determined by the overal acceptibility sensory scores, chemical quality, and microbiological results show us that the fish were spoilt on day 14. Each chemical, sensory, and microbiological result for sea bream showed us that there was a correlation and similarity and on day 14 it was spoilt.  相似文献   

7.
Slurry ice, a biphasic system consisting of small spherical ice crystals surrounded by seawater at subzero temperature, was evaluated as a new chilled storage method for whole sea bass (Dicentrarchus labrax) a sparidae fish species of remarkable commercial interests. In this study two different group of chilling methods were used during transportation; in slurry ice packaged (Group A), and flake ice packaged (Group B). The effect of this advanced system during transportation on quality losses and the shelf life of aquacultured sea bass was evaluated. Mesophilic counts for sea bass exceeded 7 log cfu/g, which is considered the maximum level for acceptability for freshwater and marine fish after 13 days for groups A and B. On day 13 TVB-N values of groups A and B, reached the legal limits (35 mg/100 g set for TVB-N) for consumption. According to the results of sensory analyses, up to day 9 all the groups were determined as "acceptable" but on day 13 the groups A and B were no longer acceptable. The main negative aspect related to quality loss in slurry ice group corresponded to the appearance of eyes and gills. Using slurry ice during transportation did not extend the shelf life of sea bass stored at 4 degrees C.  相似文献   

8.
Frozen sprats (Sprattus sprattus sprattus) were thawed and separated into three lots: two lots were wrapped and kept chilled in a refrigerator at 4C, one wrapped in aluminum foil (AF), the other in cling film (CF) and a third lot left unpackaged and held in melting ice. Biochemical tests, performed at intervals over a 16‐day period, showed better quality and an extension of shelf‐life for sprats stored unpackaged in ice compared with those held at 4C packed in AF or CF. The levels of trimethylamine oxide‐nitrogen (TMAO‐N) decreased throughout storage and significant differences (P<0.05) were observed between the lot in ice and the lots stored in AF or CF (P<0.05). However, significant differences (P<0.05) were not observed between AF and CF lots during the experiment. Increases in total volatile base nitrogen (TVB‐N) and trimethylamine‐nitrogen (TMA‐N) were significantly retarded, as were reductions in sensory quality, in the ice‐stored fish compared with packaged, refrigerated fish.  相似文献   

9.
The effect of filleting on the microbiological, chemical and sensory properties of aquacultured sea bass (Dicentrarchus labrax) stored in ice was studied. Pseudomonads, H2S‐producing bacteria (including Shewanella putrefaciens) and Brochothrix thermosphacta were the dominant bacteria at the end of the 16 day storage period in ice for both whole ungutted and filleted sea bass. Enterobacteriaceae were also found in the spoilage microflora of whole ungutted and filleted sea bass, but their counts were always lower than those of pseudomonads, H2S‐producing bacteria (including S putrefaciens) and B thermosphacta. Total viable counts for whole ungutted sea bass were always lower than those for filleted sea bass samples. Of the chemical indicators of spoilage, TMA (trimethylamine) values of whole ungutted sea bass increased very slowly, whereas significantly higher values were obtained for filleted samples, with respective values of 0.253 and 1.515 mg N per 100 g muscle being reached at the end of their shelf‐life (days 13 and 9 respectively). TVB‐N (total volatile basic nitrogen) values showed a slight increase for whole ungutted sea bass during storage, reaching a value of 26.77 mg N per 100 g muscle (day 13), whereas for filleted fish a corresponding value of 26.88 mg N per 100 g muscle was recorded (day 9). TBA (thiobarbituric acid) values increased slowly for whole ungutted and filleted sea bass samples throughout the entire storage period, reaching final values of 4.48 (day 13) and 13.84 (day 9) mg malonaldehyde kg?1 respectively. Sensory assessment of raw fish using the EC freshness scale gave a grade E for up to 5 days for whole ungutted sea bass, a grade A for a further 4 days and a grade B for an additional 4 days, after which sea bass was graded as C (unfit). Overall acceptability scores for odour, taste and texture of cooked whole ungutted and filleted sea bass decreased with increasing time of storage. The results of this study indicate that the shelf‐life of sea bass stored in ice, as determined by overall acceptability sensory scores and microbiological data, is 8–9 days for filleted and 12–13 days for whole ungutted fish. Copyright © 2003 Society of Chemical Industry  相似文献   

10.
《Food microbiology》2003,20(4):411-420
The effect of gutting on microbiological, chemical, and sensory properties of aqua-cultured sea bass (Dicentrarchus labrax) stored in ice was studied. Pseudomonads and H2S-producing bacteria (including Shewanella putrefaciens) were the dominant bacteria at the end of the 16-day storage period in ice for both whole ungutted and gutted sea bass. Brochothrix thermosphacta and Enterobacteriaceae were also found in the spoilage microflora of ungutted and gutted sea bass but their counts were always less than those of Pseudomonads and H2S-producing bacteria. Bacterial counts of whole ungutted sea bass were always higher than those obtained for gutted sea bass samples. Mesophilic counts for gutted and ungutted fish exceeded 7 log cfu g−1 after 9 and 15 days of ice storage, respectively. Of the chemical indicators of spoilage, TMA values of ungutted sea bass increased very slowly whereas for gutted samples higher values were obtained reaching a final value of 0.73 and 4.39 mg N 100 g−1, respectively (day 16). TVB-N values showed no significant increase for whole ungutted sea bass during storage reaching a value of 27.7 mg N 100 g−1 (day 16) whereas for gutted fish 36.9 mg N 100 g−1 was recorded. TBA values remained low for ungutted sea bass samples until day 16 of storage, whereas for gutted fish were variable. Of the chemical indices used, none proved useful means of monitoring early ungutted and gutted sea bass freshness in ice. Sensory assessment using the EC freshness scale gave a grade E for up to 5 days for the ungutted sea bass, a grade A for a further 2 days and a grade B for an additional 4 days, after which sea bass was graded as C (unfit). Gutted sea bass was given a grade E for up to 3 days, a grade A for the 4–7th days, and a grade B for the 8–10th days of storage, whereas on day 11 it was graded as unfit. Acceptability scores for odor, taste and texture of cooked ungutted and gutted sea bass decreased with time of storage. Results of this study indicate that the shelf-life of whole ungutted and gutted sea bass stored in ice as determined by the overall acceptability sensory scores and microbiological data is 13 and 8 days, respectively.  相似文献   

11.
Slurry ice, a biphasic system consisting of small particles of spherical ice immersed in seawater at subzero temperature, was evaluated as a new chilled method for whole sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax). Two types of different chilling methods were used for two species in this study; slurry ice-treated sea bream (Group A), slurry ice-treated sea bass (Group B), flake-ice treated sea bream (Group C) and flake ice-treated sea bass (Group D). The effects of this system on the quality and shelf life of these two species were evaluated. Mesophilic counts for sea bass exceeded 7 log cfu/g, which is considered the maximum level for acceptability for freshwater and marine fish after 13 days for Groups C, D and 15 days for Groups A, B. At day 13, TVB-N values of Groups C, D reached the legal limits (35 mg/100 g set for TVB-N) for consumption. According to the results of sensory analyses, up to day 13, all the Groups were determined as ‘acceptable’ but, on day 15, the Groups A, B, C, D were no longer acceptable. Using slurry ice pretreatment for 2 h before the storage period presumably caused the deleterious effect on appearance as well as salt and water uptake. According to the results of chemical and microbiological analyses, use of slurry ice pretreatment for 2 h extended the shelf life of sea bream and sea bass stored at 4 °C for only two days longer than did use of flake ice.  相似文献   

12.
Common sea bass ( Dicentrarchus labrax) of a Greek cage-culture origin, sampled in December and July, were stored in ice, and their sensory, microbiological and chemical spoilage patterns were studied as well as their seasonal differentiation. The sensory storage life was determined at 15 days of ice storage. The microbial population in the muscle reached levels of 105 at the acceptability limit. The ATP breakdown pattern showed a quick depletion of inosine-monophosphate (IMP) in the first 8–9 days of ice storage and slower depletion thereafter. Inosine (INO) and hypoxanthine (Hx) were formed at significant quantities. TVBN and TBA, as indicators of protein breakdown and lipid oxidation, respectively, showed low and delayed increase. A seasonal effect was observed with summer fish showing higher rates of K-value increase during early spoilage, while winter fish showed higher K-values, microbial populations and TVBN at late spoilage stages.  相似文献   

13.
为研究超声与微酸性电解水联合处理对真空包装海鲈鱼冷藏期间品质变化的影响,将新鲜鲈鱼片分别使用20?kHz 600?W超声(ultrasonic,US)、微酸性电解水(slightly acidic electrolytic water,SAEW)、超声联合微酸性电解水(US+SAEW)处理10?min,以无菌水浸渍处理...  相似文献   

14.
Quality and shelf life of non-irradiated and irradiated (2.5 and 5 kGy) sea bream in ice conditions and stored at +4 °C were investigated by measurement of microbiological, chemical and sensory analysis. Microbial counts for non-irradiated sea bream samples were higher than respective irradiated fish. Total volatile base nitrogen (TVB-N) values increased value of 38.64 mg/100 g for non-irradiated, sea bream during iced storage whereas for irradiated fish lower values of 13.48 and 12.06 mg/100 g were recorded at 2.5 and 5 kGy, respectively (day 19). Trimethylamine (TMA-N) values and thiobarbituric acid (TBA) values for irradiated samples were lower than non-irradiated samples. Acceptability scores for odour, taste and texture of cooked decreased with storage time. The sensory scores of sea bream stored in control and 2.5–5 kGy at +4 °C were 13 and 15 days, respectively. The results obtained from this study showed that the shelf life of sea bream stored in ice, as determined by overall acceptability all data, is 13 days for non-irradiated sea bream and 15 days for 2.5 kGy irradiated and 17 days for 5 kGy irradiated sea bream.  相似文献   

15.
Migration of mineral oil saturated hydrocarbons (MOSH), polyolefin oligomeric saturated hydrocarbons (POSH), and polyalphaolefins (PAO from hot melts) into dry semolina and egg pasta packed in direct contact with virgin paperboard or polypropylene (PP) flexible film was studied. Migration was monitored during shelf life (up to 24 months), through storage in a real supermarket (packs kept on shelves), conditions preventing exchange with the surrounding environment (packs wrapped in aluminium foil), and storage in a warehouse (packs inside of the transport box of corrugated board). Semolina pasta packed in virgin paperboard (without hot melts) had a MOSH content lower than 1.0 mg kg?1. An increasing contamination with PAO belonging to the adhesives used to close the boxes was detected in egg pasta, wrapped in aluminium (1.5 and 5 mg kg?1 after 3 and 24 months, respectively). An environmental contribution to total hydrocarbon contamination was observed in egg pasta kept on shelves that, after 3 and 24 months, showed levels of PAO/MOSH < C25 around 3 and 10 mg kg?1, respectively. The migration of POSH from PP film into egg pasta wrapped in aluminium was around 0.6 mg kg?1 after 3 months of contact and reached 1.7 mg kg?1 after 24 months of contact. After 9 months of contact, semolina pasta packed in PP film and stored in the transport box showed that some MOSH migrated into the pasta from the board of the transport box (through the plastic film).  相似文献   

16.
The use of a combined ozonised-slurry ice system was investigated as a new refrigeration system for the on-board storage of megrim (Lepidorhombus whiffiagonis), a fish species that is usually stored aboard fishing vessels for 1 to 2 weeks. The time elapsed between the catch and unloading at the harbour affects its quality and commercial value directly. Microbiological, chemical and sensory analyses were carried out in megrim after 2 weeks of on-board storage in ozonised slurry ice, slurry ice or flake ice, and for an additional period of 6 days. Sensory analyses revealed that megrim specimens stored in ozonised slurry ice (oSI600 batch) maintained A quality even after 20 days of storage, while counterpart batches stored in flake ice showed B quality at unloading, after 14 days of on-board storage. Storage in ozonised slurry ice (oSI600 batch) also led to significantly (p<0.05) lower counts of aerobic mesophiles, psychrotrophic bacteria, Enterobacteriaceae and proteolytic microorganisms in megrim muscle as compared with flake ice. Biochemical analyses revealed that the use of ozonised-slurry ice or slurry ice alone slowed down the formation of total volatile base-nitrogen (TVB-N) and trimethylamine-nitrogen (TMA-N) in comparison with storage in flake ice, also allowing a better control of pH. Lipid hydrolysis and oxidation events also occurred at a lower rate in the ozonised-slurry ice and slurry ice batches than in the flake ice batch. The present study demonstrates that the combination of slurry ice and ozone for the on-board storage of megrim is advisable, thus improving the quality and extending the shelf life of this fish species.  相似文献   

17.
Quality and shelf-life of Asian sea bass slices (ASBS) wrapped with chitosan (CS)/CS–epigallocatechin gallate (CE) conjugate composite or CS films and packaged in air or under vacuum during storage at 4 °C were studied. Total viable count was less than permissible limit (6 log·CFU g−1 sample) for ASBS wrapped with CS/CE conjugate composite film under vacuum (ASBS-COMP-VP) after 18 days. Moreover, lower microbial proliferation and volatile base contents were attained in ASBS-COMP-VP sample than other samples during the storage (P < 0.05). At the end of storage, ASBS-COMP-VP sample had lower lipid oxidation than those wrapped with CS film (P < 0.05). Polyunsaturated fatty acid content of ASBS-COMP-VP was retained at higher content at day 18. Therefore, ASBS-COMP-VP had the enhanced shelf-life with high acceptability up to 18 days at 4 °C, while ASBS wrapped with CS film and packaged in air or under vacuum had the shelf-life of 9 and 12 days, respectively.  相似文献   

18.
Sensory (cooked and uncooked), chemical (proximate composition, TVB-N, nucleotide degradation products and biogenic amines) and microbiological quality (TVC and total coliform) changes were investigated during storage of ungutted white grouper kept in ice and at chill temperature (4 °C). According to the sensory assessment, the shelf life of white grouper was 16 days in ice and 4 days for fish stored at chill temperature. TVB-N values increased with storage time. Amines found in white grouper stored in ice were TMA, putrescine, cadaverine, 2-phenylethylamine, dopamine, agmatine, tryptamine and serotonin. Histamine, spermine, spermidine were never detected with either storage condition. The acceptability limit in terms of microbial count was exceeded at 8 days in ice and at 4 days for fish stored at chill temperature. Total coliform count was 2.8 log10 cfu/ml at 1 day and reached 105 cfu/ml for both storage conditions.  相似文献   

19.
Farm raised European sea bass ( Dicentrarchus labrax ) were stored in melting ice for a period up to 22 days from the time of harvest, and sensory, chemical, and microbiological assessments were made at intervals. The storage life of the ungutted fish, determined by sensory evaluation of the cooked flesh, was 19 days. Of the chemical tests, only k 1 value provided a useful means of monitoring early storage change. Trimethylamine, total volatile bases and pH showed practically no change during the first half of the edible storage life of the fish. Changes in free fatty acid (FFA) content and thiobarbituric acid (TBA) value could not be used to determine loss of acceptability or end of storage life. Sulphide producing bacteria constituted a very low proportion of the total aerobic flora, suggesting that the common sulphide producer Shewanella putrefaciens was not a major spoiler of sea bass in this trial.  相似文献   

20.
The present study evaluated the combined effect of Modified Atmosphere Packaging (MAP) using two different gas mixtures (40% CO2/50% N2/10% O2; treatment M1, 60% CO2/30% N2/10% O2, treatment M2), and thyme oil (0.2% v/w, T) used as a natural preservative, on the quality and shelf life extension of fresh filleted sea bass, product of organic aquaculture, during refrigerated storage (4± 0.5 °C), for a period of 21 days. Aerobically packaged sea bass fillets (A) were used as control samples. The dominant bacteria in the microflora of sea bass fillets, irrespective of treatment, were the pseudomonads and the H2S-producing bacteria while lactic acid bacteria were also part of the dominant microflora. Total viable counts for fresh sea bass fillets stored aerobically exceeded 7 log CFU/g after 7 days, while treatments A+T, M1, M2 and M2+T reached the same value on days 9, 10, 12 and 19, respectively. Among the chemical indices determined, TBA values were within the good quality limits (2–4 mg MDA/kg), during the sensory shelf lives of sea bass samples, irrespective of treatment. TVB-N proved to be a suitable index for the spoilage of sea bass fillets stored at 4 °C. Samples A and A+T, M1, M2, M2+T exceeded the proposed upper TVB-N acceptability limit (10 mg N/100 g) on days 6, 8, 9, 13 and 17 of storage respectively. TMA-N values of the samples A, A+T and M1, M2, M2+T exceeded the proposed limit (4 mg N/100 g) on days 6, 9, 9–10, 13 and 19 of storage, respectively, and correlated well with the microbiological data, indicating that along with TVB-N, TMA-N may serve as a useful index for sea bass fillets spoilage. As regards sensory evaluation, the presence of thyme oil proved to improve the sensory quality of sea bass fillets when used in combination with MAP2, providing a shelf life of 17 days as compared to 6 days of the control samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号