首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
陈珺  吴杰 《矿冶》2017,26(2):26-30
对云南某锡铜多金属矿进行了原矿性质分析,该矿石锡、铜品位低,硫、铁、砷等含量高,属于难选矿。采用阶段磨矿、阶段选别的浮选—重选联合工艺流程,可以获得铜品位14.59%,回收率79.33%的铜精矿;锡品位为5.759%,回收率为64.64%的粗锡精矿以及硫品位为30.23%,回收率为68.55%的硫精矿,实现了矿产资源的综合利用。  相似文献   

2.
对广西某选铜尾矿进行了详细的选矿试验研究,根据矿石特性,采用磁选—铜硫混浮再分离—浮选尾矿重选工艺流程,有效地综合回收了尾矿中的铁、铜、硫、锡有价元素,最终获得的试验指标为:铁精矿铁品位63.66%、铁回收率16.89%,铜精矿铜品位16.70%、铜回收率40.06%,硫精矿硫品位36.77%、硫回收率57.05%,锡精矿锡品位24.59%、锡回收率35.16%。  相似文献   

3.
韩聪  魏德洲  刘文刚 《金属矿山》2016,45(1):97-100
为开发利用某多金属矿山选矿厂重选中矿中的铜铋硫铁等有价元素,对参照现场选矿工艺制备出的重选中矿试样进行了选矿试验。结果表明:试样经过铜、铋、硫混浮,混浮精矿摇床重选选铋,选铋尾矿抑硫浮铜,混浮尾矿弱磁选选铁流程处理,获得了铋品位为41.59%、回收率为29.13%的铋精矿,铜品位为21.03%、回收率为66.31%的铜精矿,硫品位为42.87%、回收率为90.25%的硫精矿,以及铁品位为68.06%、回收率为21.11%的铁精矿。各精矿产品指标较好,因此,铜铋硫混浮-摇床重选选铋-抑硫浮铜铜硫分离-弱磁选选铁工艺是该中矿高效开发利用的合理工艺。  相似文献   

4.
从炼铜炉渣中提取铜铁的研究   总被引:9,自引:1,他引:8  
根据某炼铜炉渣的矿物特性和选矿工艺特点,对回收铜、铁的工艺进行了探索。工业试验表明,采用阶段磨矿阶段选别工艺,所获得铜精矿品位为14.33%,回收率为48.80%,铁精矿品位为51.67%,回收率为57.55%,实现了炉渣的综合再利用。  相似文献   

5.
李辉跃 《矿冶工程》2017,37(6):66-70
对广东某低铜高硫含钨铜硫矿进行了选矿小型试验研究。采用磁选-浮选联合流程, 原矿磨矿至-0.074 mm粒级占75%后进行弱磁选, 弱磁尾矿选铜, 选铜尾矿再浮硫, 最终可获得硫品位37.10%、硫回收率38.11%、铁品位56.64%的磁性精矿, 铜品位18.81%、铜回收率88.38%的铜精矿和硫品位42.35%、硫回收率53.04%的硫精矿。  相似文献   

6.
采用浮选—还原焙烧—磁选工艺对某铜冶炼渣回收铜、铁进行研究。试验结果表明,采用硫化浮选法回收铜渣中的铜,可得到铜品位31.29%、铜回收率87.81%的铜精矿;选铜后的尾矿再通过还原焙烧—磁选工艺回收铁,可得到铁品位92.6%、铁回收率91.33%的还原铁粉。  相似文献   

7.
澳大利亚某含硫铁铜矿的选矿工艺研究   总被引:2,自引:0,他引:2  
针对澳大利亚某含硫铁铜矿样, 采用先浮选硫化矿物、后磁选铁矿物的原则工艺, 可在有效降低铁精矿中硫含量的同时综合回收矿石中的铜、硫。在原矿磨至-0.074 mm粒级占70%后铜硫混选, 粗精矿再磨至-0.074 mm粒级占95%后铜硫分离, 铜硫混选尾矿再弱磁选的闭路试验中, 可以获得铜精矿品位19.93%、铜回收率80.35%, 硫精矿品位32.75%、硫回收率41.13%, 铁精矿铁品位71.45%、铁回收率89.44%(铁精矿含硫0.34%)。  相似文献   

8.
对四川某铜铁矿开展了选矿试验研究,采用一粗二精一扫铜浮选,一粗一精铁磁选、中矿再磨再选的选别流程,获得了铜精矿铜品位22.50%、铜回收率90.38%,铁精矿TFe品位60.20%、铁回收率88.20%的指标,该铜铁矿资源得到了有效回收。  相似文献   

9.
安徽某低铜高硫磁铁矿石属嵌布关系复杂的多金属矿石。为了开发利用该矿石,采用优先选铜—活化浮硫—弱磁选选铁—铁精矿反浮选脱硫原则流程进行了选矿试验。结果表明,铁品位为46.62%、铜品位为0.32%、硫品位为20.56%的矿石采用1粗2精1扫浮铜、1粗1精2扫浮硫、1次弱磁选铁、弱磁选铁精矿1粗1精反浮选脱硫流程处理,最终获得了铜品位为17.09%、回收率为78.64%的铜精矿,铁品位为67.35%、回收率为41.16%、含硫0.28%的铁精矿,以及硫品位为43.69%、回收率为88.79%的硫精矿。该试验结论可作为选矿厂设计的依据。  相似文献   

10.
摘要:针对四川某含铁铜硫矿石性质的特点,进行了详细的选矿工艺对比试验研究,最终采用铜硫混选—再磨分离-尾矿选铁的选矿工艺流程。该工艺流程结构紧凑合理,在原选厂地理位置狭窄的情况下,可充分利用旧选厂的设备进行改扩建,即原选厂的铜系统用作铜硫混选作业,只需增加铜-硫分离作业的较少设备及回收铁的弱磁选机便可。实验室闭路试验结果表明,采用该新选矿工艺流程可获得铜品位22.78%、回收率87.32%的铜精矿;硫品位43.89%、回收率50.27%的硫精矿;铁品位63.34%、回收率40.76%精矿的铁精矿(对原矿磁性铁的回收率为92%)。选矿厂按该选矿工艺流程改扩建后获得的工业生产指标与实验室的选别指标相吻合,使企业的经济效益得到了较大幅度的提高。   相似文献   

11.
澳大利亚Caim Hill磁铁矿选矿试验研究   总被引:2,自引:0,他引:2  
针对澳大利亚Cairn Hill含铜、金的磁铁矿矿石,进行了先磁后浮及先浮后磁两大原则流程方案的选矿试验,并在先浮后磁的浮选方案中又进行了铜优先浮选流程和铜硫混合浮选两种流程方案试验。最终确定优先浮选铜、后浮选硫、尾矿弱磁选铁的先浮后磁联合工艺。小型闭路试验获得了铜品位21.15%、铜回收率88.94%、含金4.10g/t、金回收率49.50%的铜精矿和铁品位70.68%、铁回收率92.14%的铁精矿,以及硫品位40.58%、硫回收率57.80%的硫精矿。  相似文献   

12.
新疆且末某铜铁矿全铁品位为50.92%,铜品位为0.31%,含硫3.46%,为降低铁精矿硫品位及综合利用回收铜硫,对其进行了铁精矿脱硫及铜硫综合回收试验研究。通过工艺流程对比,确定采用组合药剂先浮选后磁选流程,最终获得了全铁品位为67.12%、铁回收率为76.39%、含硫为0.26%的铁精矿,硫品位为23.86%、硫回收率为79.28%的硫精矿,铜品位为15.74%、铜回收率为70.66%的铜精矿,铁精矿达到了质量要求,并实现了该类矿石的综合利用。  相似文献   

13.
陕西大西沟拥有我国最大的菱铁矿床,现有焙烧工艺与尾矿处理面临着生产成本与环保的挑战。为提升矿山企业生命力,实现“降本增效,无尾矿山”的目标,对大西沟菱铁矿展开系统性研究。研究结果表明,试验矿石为低磷含硫含铜的磁铁矿-菱铁矿,根据其性质制订了预选抛尾—干式磨矿—闪速磁化焙烧—选铁—综合回收铜与云母—尾矿建材化的全流程方案。原矿TFe品位仅为19.91%,铁品位较低,这将大幅度增加后续处理成本。因此,为降低后续处理成本,矿石经磁选抛尾处理使得TFe品位达到23.34%。以预选样品作为基准,全流程可获得TFe品位60.49%、铁回收率83.81%的铁精矿,铜品位17.54%、铜回收率76.43%的铜精矿,含K2O、Al2O3分别为8.32%、25.36%和回收率30%左右的云母精矿,以及含K2O、Al2O3分别为6.06%、18.66%和回收率20%以上的次级云母精矿等四类产品,并且尾矿可作为建筑材料,实现了矿石的全组分利用,达到无尾矿山这一目标。   相似文献   

14.
四川某多金属硫化铜矿的综合回收   总被引:1,自引:0,他引:1  
针对四川某多金属硫化铜矿矿石的性质,对该矿中的铜、钴、铁进行了综合回收试验。结果表明,采用混合浮选—铜钴分离浮选工艺,能获得铜品位22.41%、回收率91.32%的铜精矿和品位0.53%、回收率56.22%的钴精矿。浮选尾矿再用磁选回收铁,可以获得品位64.49%、回收率38.04%的铁精矿。  相似文献   

15.
某低品位铁矿石的矿物学特性与选矿试验研究   总被引:1,自引:0,他引:1  
较系统地研究了某低品位铁矿石的矿石性质和选矿工艺。研究结果表明,该矿石为低品位磁铁矿矿石,原矿中TFe含量为27.65%,磁性铁占有率为87.96%;采用阶段磨矿、磁选流程,控制一段磨矿细度-74μm占57.82%,粗精矿再磨细度-74μm占75.92%,最终精矿TFe品位可以达到67.07%,回收率达到86.05%;采用一段磨矿、磁选—反浮选流程,控制磨矿细度-74μm占67.56%,精矿品位可以达到66.21%,回收率达到79.97%。  相似文献   

16.
国外某低品位含铁氧化铜矿氧化率高,绿泥石含量大、易泥化,铁含量较高。根据以上矿石性质,采用一次粗选、一次扫选、二次精选的硫氧混合浮选流程回收铜,浮选尾矿再经两段磁选回收铁,最终获得铜精矿铜品位17.04%、铜回收率52.65%,铁精矿铁品位62.62%、全铁回收率64.18%、磁性铁回收率92.96%的指标。  相似文献   

17.
红岭铜、铅、锌、铁多金属矿,铜、铅品位低,铅仅为0.04%。为综合回收各种有用矿物,进行了选矿工艺流程试验。多方案工艺流程试验比较后推荐铜铅混合浮选再分离-混尾选锌-锌浮选尾矿弱磁选的工艺流程。该流程很好兼顾了各种目的矿物的回收,取得较好的工艺指标,铜精矿品位23.52%、回收率71.27%,铅精矿品位45.77%、回收率59.78%,锌精矿品位54.05%、回收率93.65%,铁精矿品位66.09%、回收率33.50%。  相似文献   

18.
印度某铁矿选矿工艺研究   总被引:2,自引:1,他引:2  
针对印度某铁矿在工艺矿物学研究基础上进行了选矿工艺研究,采用阶段磨矿—粗细分别磁选流程,可以获得品位为64.23%、回收率为74.89%的铁精矿;采用磁选—反浮选流程,可以获得品位为64.57%、回收率为72.11%的铁精矿;采用焙烧—磁选流程,可以获得品位为67.98%、回收率为95.18%的铁精矿。在目前条件下,阶段磨矿—粗细分别磁选工艺较为适宜。  相似文献   

19.
对秘鲁某含Cu 0.12%、Au 0.12 g/t、S 2.60%、Fe 45.52%的金铜铁多金属矿石进行了选矿工艺优化试验研究。该矿石原设计选矿工艺流程为铜硫混选—铜硫分离—混选尾矿磁选回收铁,存在铜硫分离难度大、石灰用量高和分选指标不理想等问题。针对原流程存在的问题,提出采用铜硫等可浮—铜硫分离—难选硫强化浮选—浮选尾矿磁选回收铁的优化工艺流程。铜硫等可浮分选时,在无碱条件下采用选择性的铜捕收剂BK306将铜和部分易浮黄铁矿等硫化矿物浮出,并进行铜硫分离回收铜、金;然后采用活化剂和强力捕收剂强化浮选脱除矿石中的难浮硫化物;最后通过磁选从浮选尾矿中回收铁。该优化工艺既可实现矿石中铜、金等有价金属的高效回收和硫的脱除,又能显著降低铜硫分离所需的石灰用量,并保证后续磁选作业直接获得含硫低、铁品质较好的铁精矿。闭路试验获得铜品位20.10%、金品位15.29 g/t、铜回收率68.42%、金回收率49.07%的铜精矿,硫品位30.78%、总硫回收率84.05%的硫精矿以及铁品位68.88%、含硫0.18%、铁回收率90.57%的铁精矿。与原工艺相比,优化工艺的铜精矿铜品位和铜回收率分别提高2.49和10.25个百分点,铜精矿中金品位和金回收率分别提高5.27 g/t和17.05个百分点,硫回收率提高1.78个百分点。实现了矿石中铜、金、硫、铁的高效综合回收。   相似文献   

20.
孙放 《金属矿山》2012,41(10):70-74
某铁矿矿石中铁矿物以磁铁矿为主,并伴生有少量可供综合回收的黄铜矿和黄铁矿。为了给该矿山的开发建设提供可行性研究和设计依据,进行了-75 mm干式磁选抛尾-先浮后磁或先磁后浮阶段磨选、原矿直接先浮后磁或先磁后浮阶段磨选共4种流程的选矿试验研究。根据试验结果,经分析比较,推荐采用-75 mm干式磁选抛尾-先磁后浮阶段磨选流程。该流程可预先抛弃产率达21.0.4%的废石,最终获得铁品位为66.10%、铁回收率为83.48%、硫含量为0.26%的铁精矿,铜品位为15.04%、铜回收率为63.27%的铜精矿以及硫品位为45.51%、硫回收率为72.89%的硫精矿  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号