首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 828 毫秒
1.
对云南某低品位钛铁矿进行了选矿试验研究, 采用弱磁与强磁相结合的方案进行抛尾, 可抛掉TiO2品位为1.18%、产率为81.11%的尾矿, 获得TiO2品位为12.38%、TiO2回收率为64.50%的抛尾精矿; 抛尾精矿采用高梯度磁选预选获得TiO2品位为22.29%、对原矿回收率为57.16%的强磁选精矿; 以MOH为钛铁矿捕收剂, 采用一粗三扫三精浮选流程对高梯度磁选精矿进行浮选, 最终可获得TiO2品位为45.46%、TiO2总回收率为49.31%的钛铁矿精矿。  相似文献   

2.
陕西某钛铁矿选矿试验   总被引:1,自引:0,他引:1  
针对陕西某低品位原生钛铁矿石性质的特点,采用弱磁选优先选别钛磁铁矿、弱磁选尾矿高梯度磁选预抛尾、预选粗精浮选脱硫、浮选选钛铁矿流程进行了选钛试验研究。最终获得了铁品位为52.46%、TiO2品位为11.35%、铁回收率为27.63%、TiO2回收率为16.41%的攀西式钛磁铁精矿,以及TiO2品位为46.28%、TiO2回收率为45.30%的钛铁精矿。  相似文献   

3.
以乳化煤油作为辅助捕收剂对某辉长岩型钛铁矿进行了浮选试验研究, 探索了H2SO4用量、MOH用量、乳化煤油用量对钛铁矿浮选分离效果的影响, 并进行了浮选闭路试验。以乳化煤油作为钛铁矿浮选的辅助捕收剂, 通过一粗两扫四精闭路浮选流程, 获得了TiO2品位47.21%、回收率79.93%的钛精矿。乳化煤油对钛铁矿具有良好的辅助捕收效果, 可降低捕收剂MOH用量, 并显著提高精矿品位。  相似文献   

4.
攀枝花某钛铁矿选矿厂尾矿库中尾矿TiO2和TFe品位分别为10.28%和10.38%,采用弱磁选铁-强磁预富集钛-浮选工艺回收其中的铁和钛。弱磁选铁可获得铁品位57.5%、回收率22.19%的铁精矿; 弱磁选铁尾矿经强磁预富集得到TiO2品位15.63%、回收率79.69%的强磁钛粗精矿; 强磁钛粗精矿经一次粗选一次扫选四次精选浮选闭路试验可获得TiO2品位45.97%、对强磁钛粗精矿回收率76.32%、对尾矿库尾矿回收率60.82%的钛精矿。该工艺实现了钛铁矿尾矿二次资源的综合利用。  相似文献   

5.
甘肃大滩某低品位钛铁矿主要有价元素为铁和钛,TFe品位为12.07%,TiO2含量为5.56%,有害元素硫、磷含量较低。钛主要分布在钛铁矿中,分布率为81.82%,是回收的主要目的矿物。为确定该资源的合理开发利用方案,对其进行了磁选-浮选试验研究。结果表明,原矿磨细至-0.074 mm占38%,在粗选磁场强度为605.1 kA/m、精选磁场强度为565.3 kA/m条件下,经1粗1精磁选可以获得TiO2品位为18.13%、对原矿回收率为76.79%的磁选精矿,磁选精矿采用自主复配合成的高效捕收剂EMG和新型抑制剂SF-101经1粗2精1扫闭路浮选试验可以获得TiO2品位47.46%、回收率88.08%的钛精矿,对原矿回收率为67.63%,可以为该钛铁矿的选别提供借鉴。  相似文献   

6.
采用醚二胺类阳离子捕收剂XL-1浮选攀枝花密地选钛厂钛铁矿, 脱硫后, 在捕收剂用量180 g/t和浮选温度5~10 ℃时, 经一粗四精一扫、中矿顺序返回的浮钛闭路流程, 由TiO2品位20.38%的原矿得到TiO2品位47.43%、回收率69.30%的钛精矿产品, 尾矿TiO2品位为8.98%。  相似文献   

7.
江苏某坡洪积型钛铁矿石TiO2品位2.63%,钛铁矿嵌布粒度细,矿石矿物组成复杂,黏土含量高。为开发利用该矿石资源,在工艺矿物学性质研究的基础上,首先进行了重选预选工艺和磁选预选工艺对比试验,磁选预选工艺抛除尾矿产率大且TiO2损失率较低。对磁选预选精矿在一段磨矿细度为-0.076 mm占60%、二段磨矿细度为-0.076 mm占90%条件下进行二阶段磨矿—阶段磁选试验,TiO2品位由6.78%提高至14.53%;二段强磁精矿采用螺旋溜槽重选,重选精矿以硫酸为pH调整剂、草酸为抑制剂、水玻璃为分散剂、MOH为捕收剂,经1粗4精1扫闭路浮选,能获得TiO2品位48.26%、回收率13.69%的钛精矿。因此,采用原矿强磁预选—预选精矿二阶段磨矿阶段磁选—磁选精矿螺旋溜槽重选—重选精矿浮选的联合选矿工艺,最终能获得TiO2品位高于48%的合格钛精矿。试验结果可以为坡洪积型钛铁矿石的开发利用提供参考依据。  相似文献   

8.
江苏某坡洪积型钛铁矿石TiO2品位2.63%,钛铁矿嵌布粒度细,矿石矿物组成复杂,黏土含量高。为开发利用该矿石资源,在工艺矿物学性质研究的基础上,首先进行了重选预选工艺和磁选预选工艺对比试验,磁选预选工艺抛除尾矿产率大且TiO2损失率较低。对磁选预选精矿在一段磨矿细度为-0.076 mm占60%、二段磨矿细度为-0.076 mm占90%条件下进行二阶段磨矿-阶段磁选试验,TiO2品位由6.78%提高至14.53%;二段强磁精矿采用螺旋溜槽重选,重选精矿以硫酸为pH调整剂、草酸为抑制剂、水玻璃为分散剂、MOH为捕收剂,经1粗4精1扫闭路浮选,能获得TiO2品位48.26%、回收率13.69%的钛精矿。因此,采用原矿强磁预选-预选精矿二阶段磨矿阶段磁选-磁选精矿螺旋溜槽重选-重选精矿浮选的联合选矿工艺,最终能获得TiO2品位高于48%的合格钛精矿。试验结果可以为坡洪积型钛铁矿石的开发利用提供参考依据。  相似文献   

9.
螺旋溜槽回收某细粒级钛铁矿的试验研究   总被引:1,自引:0,他引:1  
针对某矿样钛品位低(TiO2品位10.18%)、物料粒度细、重矿物含量高、脉石具有一定磁性的特点,采用一粗二扫螺旋溜槽重选流程预先富集钛,得到TiO2品位15.63%的重选精矿; 再经一粗三精浮选流程最终获得钛精矿TiO2品位46.35%、作业回收率69.95%、对原矿回收率48.27%。  相似文献   

10.
马龙秋  郭春雷 《金属矿山》2015,44(10):71-75
辽宁某钨选厂矿石中WO3的品位为0.79%,在黑钨矿中的分布率为78.48%。现场采用单一重选工艺,仅能获得WO3品位22%~23%、回收率88%~89%的重选精矿。为提高精矿指标,对重选精矿进行了磁选-浮选-浸出试验。结果表明:重选精矿在磁场强度为80 kA/m条件下磁选除铁,可获得WO3品位为23.54%的磁选精矿;磁选精矿以丁基黄药为捕收剂进行反浮选,获得WO3品位为53.08%的反浮选精矿;反浮选精矿以盐酸为浸出剂进行浸出除杂,可获得WO3品位为65.11%、作业回收率为96.71%、对原矿回收率为82.42%的精矿,实现了该钨矿资源的有效回收。  相似文献   

11.
采用阶段磨矿-阶段选别的磁选-浮选联合流程对国外某复杂钛铁矿矿石进行了选矿试验研究, 结果表明, 对于含Fe 51.47%、含TiO213.53%的原矿, 可以获得含Fe 65.12%、回收率78.60%的铁精矿和含TiO2 45.12%、回收率45.03%的钛精矿。  相似文献   

12.
对四川某磷矿进行了浮选试验研究。采取双反浮选工艺, 以新型药剂MG-7为脱镁反浮选捕收剂、H2SO4为抑制剂和pH调节剂, 以T609为脱硅反浮选捕收剂、Na2CO3为pH调整剂, 最终获得了精矿品位32.25%、回收率82.21%的闭路试验指标, 实现了目的矿物与脉石的分离。  相似文献   

13.
对陕西某选矿厂选铁尾矿进行了回收钛铁矿的实验研究。选铁尾矿经弱磁-强磁-磨矿-强磁工艺所得的精矿, 再经浮选回收钛铁矿。以H2SO4为调整剂, 草酸为抑制剂, FAT-3为钛铁矿捕收剂, 采用1粗5精浮选工艺流程, 最终获得了精矿TiO2品位47.13%、回收率74.96%的试验指标, 实现了尾矿中钛铁矿的回收。  相似文献   

14.
纪振明 《现代矿业》2018,34(11):103-105
为给云南某难选赤铁矿的开发利用提供技术依据,在对矿石进行工艺矿物学性质研究的基础上,采用先正浮选再反浮选的流程进行选矿试验研究。试验结果表明:在磨矿细度为-0.074 mm 90%,正浮选分散剂Na2CO3用量为3 000 g/t、捕收剂(氧化石蜡皂与塔尔油用量比为1∶1)用量为700 g/t,反浮选抑制剂淀粉用量为1 200 g/t、活化剂CaO用量为1 200 g/t、捕收剂RA-715用量为400 g/t、NaOH调整pH值为11.5的情况下,采用1粗1扫的正浮选与1粗1精3扫的反浮、中矿顺序返回的联合流程,最终可获得铁品位为60.50%,铁回收率为80.95%的铁精矿。  相似文献   

15.
对贵州某沉积钙质磷块岩进行了浮选工艺研究。采用H2SO4为氟磷灰石抑制剂、BW-1为白云石捕收剂,进行了浮选单因素试验; 在此基础上进行了正交试验,并采用响应面曲线法进行了浮选条件优化。确定了最佳浮选条件为: 磨矿细度-0.074 mm粒级占60%、H2SO4用量13.20 kg/t和BW-1用量400 g/t。采用一段反浮选试验流程,可得到精矿品位30.94%、回收率92.45%的磷精矿。研究结果表明,磨矿细度与H2SO4用量的交互作用对精矿品位影响显著,H2SO4用量和BW-1用量的交互作用对精矿回收率影响显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号