首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High emission current backscattered electron (HC-BSE) stereo imaging at low accelerating voltages (≤ 5 keV) using a field emission scanning electron microscope was used to display surface structure detail. Samples of titanium with high degrees of surface roughness, for potential medical implant applications, were imaged using the HC-BSE technique at two stage tilts of + 3° and − 3° out of the initial position. A digital stereo image was produced and qualitative height, depth and orientation information on the surface structures was observed. HC-BSE and secondary electron (SE) images were collected over a range of accelerating voltages. The low voltage SE and HC-BSE stereo images exhibited enhanced surface detail and contrast in comparison to high voltage (> 10 keV) BSE or SE stereo images. The low voltage HC-BSE stereo images displayed similar surface detail to the low voltage SE images, although they showed more contrast and directional sensitivity on surface structures. At or below 5 keV, only structures a very short distance into the metallic surface were observed. At higher accelerating voltages a greater appearance of depth could be seen but there was less information on the fine surface detail and its angular orientation. The combined technique of HC-BSE imaging and stereo imaging should be useful for detailed studies on material surfaces and for biological samples with greater contrast and directional sensitivity than can be obtained with current SE or BSE detection modes.  相似文献   

2.
Scanning electron microscopy (SEM) techniques are widely used in microstructural investigations of materials since it can provide surface morphology, topography, and chemical information. However, it is important to use correct imaging and sample preparation techniques to reveal the microstructures of materials composed of components with different polishing characteristics such as grey cast iron, graphene platelets (GPLs)‐added SiAlON composite, SiC and B4C ceramics containing graphite or graphene‐like layered particles. In this study, all microstructural details of gray cast iron were successfully revealed by using argon ion beam milling as an alternative to the standard sample preparation method for cast irons, that is, mechanical polishing followed by chemical etching. The in‐lens secondary electron (I‐L‐SE) image was clearly displayed on the surface details of the graphites that could not be revealed by backscattered electron (BSE) and Everhart–Thornley secondary electron (E‐T SE) images. Mechanical polishing leads to pull‐out of GPLs from SiAlON surface, whereas argon ion beam milling preserved the GPLs and resulted in smooth surface. Grain and grain boundaries of polycrystalline SiC and B4C were easily revealed by using I‐L SE image in the SEM after only mechanical polishing without any etching process. While the BSE and E‐T SE images did not clearly show the residual graphites in the microstructure, their distribution in the B4C matrix was fully revealed in the I‐L SE image.  相似文献   

3.
Measurements of the electron range R, and the backscattering coefficient η and the secondary electron yield δ at normal and tilted incidence for different elements show characteristic differences for electron energies in the range of 0.5 to 5 keV, compared with energies larger than 5 keV. The backscattering coefficient does not increase monotonically with increasing atomic number; for example, the secondary electron yield shows a lesser increase with increasing tilt angle. This can be confirmed in back-scattered electron (BSE) and secondary electron (SE) micrographs of test specimens. The results are in rather good agreement with Monte Carlo simulations using elastic Mott cross-sections and a continuous-slowing-down model with a Rao Sahib-Wittry approach for the stopping power at low electron energies. Therefore, this method can be used to calculate quantities of BSE and SE emission, which need a larger experimental effort. Calculations of the angular distribution of BSEs show an increasing intensity with increasing atomic number at high takeoff angles than expected from a cosine law that describes the angular characteristics at high electron energies. When simulating the energy distribution of BSEs, the continuous-slowing-down model should be substituted by using an electron energy-loss spectrum (EELS) that considers plasmon losses and inner-shell ionizations individually (single-scattering-function model). The EELS can be approached via the theory for aluminium or from EELS spectra recorded in a transmission electron microscope for other elements. Measurements of electron range Rα En of 1 to 10 keV electrons are obtained from transmission experiments with thin films of known mass thickness. In agreement with other authors the exponent n is lower than at higher electron energies.  相似文献   

4.
Pooley GD 《Scanning》2004,26(5):240-249
Secondary (SE) and backscattered electron (BSE) imaging as well as x-ray microanalysis have demonstrated that the weathering of chromian spinel occurs as a progressive form of alteration. Numerous chemical discriminant analysis methods based on the composition of chromian spinel are used to locate valuable deposits of minerals. These methods will be misleading if the correct interpretation of the weathering of chromian spinel and the subsequent pattern of changes in its mineral chemistry are not properly assessed using scanning electron microscopy. This assessment is vital in understanding the geological processes involved and the economic potential of any indicated deposit. Minerals such as chromian spinel, pyrope garnet, and picroilmenite are considered to be highly resistant to weathering and abrasion and are therefore useful in the search for associated valuable deposits of diamond, nickel, platinum, and gold. Known as indicator minerals, they are usually present in relatively large concentrations compared with the target mineral (e.g., diamond) and form large and often subtle dispersion anomalies adjacent to the deposit. Chromian spinel has long been regarded as a stable indicator mineral; however, detailed SE and BSE imaging indicates that many of the chromian spinels that are routinely examined using scanning electron microscopes (SEM) and microprobes are extensively altered. Secondary electron and BSE imaging of weathered chromian spinel in a normal SEM provides valuable data on the form and chemical style of the alteration. Secondary electron imaging of weathered chromian spinel in the environmental SEM (ESEM) not only enhances the difference in atomic number between unaltered and altered areas but also allows high-resolution imaging of these very fine replacement textures.  相似文献   

5.
The relative weight, δΒ, of the yield of secondary electrons, SE2, induced by the backscattered electrons, BSE, with respect to that, δP, of secondary electrons, SE1, induced by the primary electrons, PE, is deduced from simple theoretical considerations. At primary energies E0 larger than EM (where the total SE yield δ = δP + δB is maximum), the dominant role of the backscattering events is established. It is illustrated in SEM by a direct comparison of the contrast between SE images and BSE images obtained at E0 ~ 5 keV and E0 ~ 15 keV on a stratified specimen. At energies E0 less than EM, the dominant role of SE1 electrons with respect to SE2 (and SE3) is established. It is illustrated by the better practical resolution of diamond images obtained with an in‐lens detection in low voltage SEM E0 ~ 0.2–1 keV range compared with that obtained with a lateral detector. The present contribution illustrates the improved performance of LVSEM in terms of contrast and of practical resolution as well as the importance of variable voltage methods for subsurface imaging. The common opinion that the practical lateral resolution is given by the incident spot diameter is also reconsidered in LVSEM.  相似文献   

6.
R. Autrata 《Scanning》1984,6(4):174-182
The double detector system described here is a simple device suitable for any SEM. It permits efficient imaging of specimen surfaces in either the secondary electron (SE) or backscattered electron (BSE) mode. The BSE detector is an annular single-crystal scintillator made of yttrium aluminium garnet (YAG) and the SE detector has a scintillator of the same material. Both detectors have their own light guides which are connected to a single photomultiplier. The choice of signal is made with a mechanical diaphragm mounted on a flange between the light guide and the photomultiplier. The SE detector may be replaced by a second BSE detector to allow the detection of “low” take-off angle BSEs to provide information which differs from that given by the annular BSE detector which operates to detect BSEs with a “high” take-off angle. In this way it is possible to image either material or topographic contrast with high resolution and to take advantage of the choice of detected electrons.  相似文献   

7.
Epidermal growth factor receptors (EGFR) were labeled with 10 nm immunogold and examined on uncoated specimens of A431 human epidermoid carcinoma cells. A field emission gun and a high-sensitivity YAG ring detector were used to demonstrate the affinity labeling simultaneously in the secondary-electron (SE) and backscattered-electron (BSE) modes with a low accelerating voltage (Vo). At Vo=2kV, the SE and BSE signals were too weak to identify all markers, while at Vo=3–7 kV labeling was observed unambiguously in both the SE and BSE modes with smaller and higher working distances. Increasing the Vo to above 7 kV sometimes provokes instability of the specimens. A Vo of ? 10 kV produces charging artifacts in the SE image, but permits a BSE image of the gold markers providing additional topographic information. In conclusion, immunogold labeling can be used with good results for uncoated specimens.  相似文献   

8.
9.
The application of secondary electron (SE) imaging, backscattered electron imaging (BSE) and electron backscattered diffraction (EBSD) was investigated in this work to study the bacterial adhesion and proliferation on a commercially pure titanium (cp Ti) and a Ti6Al4V alloy (Ti 64) with respect to substrate microstructure and chemical composition. Adherence of Gram‐positive Staphylococcus epidermidis 11047 and Streptococcus sanguinis GW2, and Gram‐negative Serratia sp. NCIMB 40259 and Escherichia coli 10418 was compared on cp Ti, Ti 64, pure aluminium (Al) and vanadium (V). The substrate microstructure and the bacterial distribution on these metals were characterised using SE, BSE and EBSD imaging. It was observed that titanium alloy‐phase structure, grain boundaries and grain orientation did not influence bacterial adherence or proliferation at microscale. Adherence of all four strains was similar on cp Ti and Ti 64 surfaces whilst inhibited on pure Al. This work establishes a nondestructive and straight‐forward statistical method to analyse the relationship between microbial distribution and metal alloy structure.  相似文献   

10.
Confocal microscopy imaging of cells allows to visualize the presence of specific antigens by using fluorescent tags or fluorescent proteins, with resolution of few hundreds of nanometers, providing their localization in a large field‐of‐view and the understanding of their cellular function. Conversely, in scanning electron microscopy (SEM), the surface morphology of cells is imaged down to nanometer scale using secondary electrons. Combining both imaging techniques have brought to the correlative light and electron microscopy, contributing to investigate the existing relationships between biological surface structures and functions. Furthermore, in SEM, backscattered electrons (BSE) can image local compositional differences, like those due to nanosized gold particles labeling cellular surface antigens. To perform SEM imaging of cells, they could be grown on conducting substrates, but obtaining images of limited quality. Alternatively, they could be rendered electrically conductive, coating them with a thin metal layer. However, when BSE are collected to detect gold‐labeled surface antigens, heavy metals cannot be used as coating material, as they would mask the BSE signal produced by the markers. Cell surface could be then coated with a thin layer of chromium, but this results in a loss of conductivity due to the fast chromium oxidation, if the samples come in contact with air. In order to overcome these major limitations, a thin layer of indium‐tin‐oxide was deposited by ion‐sputtering on gold‐decorated HeLa cells and neurons. Indium‐tin‐oxide was able to provide stable electrical conductivity and preservation of the BSE signal coming from the gold‐conjugated markers. Microsc. Res. Tech. 78:433–443, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
J. Pawley  R. Albrecht 《Scanning》1988,10(5):184-189
On biological samples, the topographic imaging capabilities of the new generation of scanning electron microscopes (SEM) (those having both field-emission guns and low aberration lenses) rival those of the replica techniques. In addition, they permit the localization of specific molecules on the sample surface using one of several labeling techniques utilizing heavy metal colloids. Normally, colloidal gold can be detected in the SEM both by the secondary electron signal (shape) and by the backscattered electron signal (BSE, Z-contrast). The new instruments seem to produce their best topographic images using low-beam voltage (1–5 kV) where topographic contrast is higher and the required thickness of the metal coating is less (Haggis and Pawley 1988, Ris and Pawley 1988). Although the detection of backscattered electrons is more difficult at low-beam voltage, we are able to show here that the secondary electron (SE) signal produced with a 2–5-kV beam permits the unambiguous detection of gold particles as small as 5 nm on carbon-coated specimens while a 1-kV beam produces a high-quality topographic image of the same sample.  相似文献   

12.
When imaging insulating specimens in a scanning electron microscope, negative charge accumulates locally (‘sample charging’). The resulting electric fields distort signal amplitude, focus and image geometry, which can be avoided by coating the specimen with a conductive film prior to introducing it into the microscope chamber. This, however, is incompatible with serial block‐face electron microscopy (SBEM), where imaging and surface removal cycles (by diamond knife or focused ion beam) alternate, with the sample remaining in place. Here we show that coating the sample after each cutting cycle with a 1–2 nm metallic film, using an electron beam evaporator that is integrated into the microscope chamber, eliminates charging effects for both backscattered (BSE) and secondary electron (SE) imaging. The reduction in signal‐to‐noise ratio (SNR) caused by the film is smaller than that caused by the widely used low‐vacuum method. Sample surfaces as large as 12 mm across were coated and imaged without charging effects at beam currents as high as 25 nA. The coatings also enabled the use of beam deceleration for non‐conducting samples, leading to substantial SNR gains for BSE contrast. We modified and automated the evaporator to enable the acquisition of SBEM stacks, and demonstrated the acquisition of stacks of over 1000 successive cut/coat/image cycles and of stacks using beam deceleration or SE contrast.  相似文献   

13.
Ishitani T  Ohya K 《Scanning》2003,25(4):201-209
Monte Carlo simulations have been carried out to compare the spatial spreads of secondary electron (SE) information in scanning ion microscopy (SIM) with scanning electron microscopy (SEM). Under Ga ion impacts, the SEs are excited by three kinds of collision-partners, that is, projectile ion, recoiled target atom, and target electron. The latter two partners dominantly contribute to the total SE yield gamma for the materials of low atomic number Z2. For the materials of high Z2, on the other hand, the projectile ions dominantly contribute to gamma. These Z2 dependencies generally cause the gamma yield to decrease with an increasing Z2, in contrast with the SE yield delta under electron impacts. Most of the SEs are produced in the surface layer of about 5lambda in depth (lambda: the mean free path of SEs), as they are independent of the incident probe. Under 30 keV Ga ion impacts, the spatial spread of SE information is roughly as small as 10 nm, decreasing with an increasing Z2. Under 10 keV electron impacts, the SEI excited by the primary electrons has a small spatial spread of about 5lambda, but the SEII excited by the backscattered electrons has a large one of several 10 to several 100 nanometers, decreasing with an increasing Z2. The main cause of a small spread of SE information at ion impact is the short ranges of the projectile ions returning to the surface to escape as backscattered ions, the recoiled target atoms, and the target electrons in collision cascade. The 30 keV Ga-SIM imaging is better than the 10 keV SEM imaging in spatial resolution for the structure/material measurements. Here, zero-size probes are assumed.  相似文献   

14.
A method of direct visualization by correlative scanning electron microscopy (SEM) and fluorescence light microscopy of cell structures of tissue cultured cells grown on conductive glass slides is described. We show that by growing cells on indium–tin oxide (ITO)-coated glass slides, secondary electron (SE) and backscatter electron (BSE) images of uncoated cells can be obtained in high-vacuum SEM without charging artefacts. Interestingly, we observed that BSE imaging is influenced by both accelerating voltage and ITO coating thickness. By combining SE and BSE imaging with fluorescence light microscopy imaging, we were able to reveal detailed features of actin cytoskeletal and mitochondrial structures in mouse embryonic fibroblasts. We propose that the application of ITO glass as a substrate for cell culture can easily be extended and offers new opportunities for correlative light and electron microscopy studies of adherently growing cells.  相似文献   

15.
In transmission electron microscopy (TEM) of thick biological specimens, the relationship between the recorded image intensities and the projected specimen mass density is distorted by incoherent electron–specimen interactions and aberrations of the objective lens. It is highly desirable to develop a strategy for maximizing and extracting the coherent image component, thereby allowing the projected specimen mass density to be directly related to image intensities. For this purpose, we previously used exit wavefront reconstruction to understand the nature of image formation for thick biological specimens in conventional TEM. Because electron energy-loss filtered imaging allows the contributions of inelastically scattered electrons to be removed, it is potentially advantageous for imaging thick, biological samples. In this paper, exit wavefront reconstruction is used to quantitatively analyse the imaging properties of an energy-filtered microscope and to assess its utility for thick-section microscopy. We found that for imaging thick biological specimens (> 0.5 μm) at 200 keV, only elastically scattered electrons contribute to the coherent image component. Surprisingly little coherent transfer was seen when using energy-filtering at the most probable energy loss (in this case at the first plasmon energy-loss peak). Furthermore, the use of zero-loss filtering in combination with exit wavefront reconstruction is considerably more effective at removing the effects of multiple elastic and inelastic scattering and microscope objective lens aberrations than either technique by itself. Optimization of the zero-loss signal requires operation at intermediate to high primary voltages (> 200 keV). These results have important implications for the accurate recording of images of thick biological specimens as, for instance, in electron microscope tomography.  相似文献   

16.
In this study backscattered electron (BSE) imaging was used to display cellular structures stained with heavy metals within an unstained resin by atomic number contrast in successively deeper layers. Balb/c 3T3 fibroblasts were cultured on either 13-mm discs of plastic Thermanox, commercially pure titanium or steel. The cells were fixed, stained and embedded in resin and the disc removed. The resin block containing the cells was sputter coated and examined in a field-emission scanning electron microscope. The technique allowed for the direct visualization of the cell undersurface and immediately overlying areas of cytoplasm through the surrounding embedding resin, with good resolution and contrast to a significant depth of about 2 μm, without the requirement for cutting sections. The fixation protocol was optimized in order to increase heavy metal staining for maximal backscattered electron production. The operation of the microscope was optimized to maximize the number of backscattered electrons produced and to minimize the spot size. BSE images were collected over a wide range of accelerating voltages (keV), from low values to high values to give ‘sections' of information from increasing depths within the sample. At 3–4 keV only structures a very short distance into the material were observed, essentially the areas of cell attachment to the removed substrate. At higher accelerating voltages information on cell morphology, including in particular stress fibres and cell nuclei, where heavy metals were intensely bound became more evident. The technique allowed stepwise ‘sectional’ information to be acquired. The technique should be useful for studies on cell morphology, cycle and adhesion with greater resolution than can be obtained with any light-microscope-based system.  相似文献   

17.
An imaging technique to determine in situ the shape and atomic structure of nanosized Xe crystals embedded in Al is described using high-resolution transmission electron microscopy (HRTEM). The Xe nanocrystals, with sizes less than 5 nm were prepared by the implantation of 30 keV Xe+ into Al at room temperature. The fcc Xe nanocrystals are mesotactic with the Al lattice and have a lattice parameter ≈ 50% larger than that of Al. HRTEM images of the Xe were not clear in [110] zone axis illumination because of the small number of Xe atoms relative to Al atoms in any atom column. An off-axial imaging technique that consists of tilting the specimen several degrees from a zone axis and defocusing to suppress the Al lattice fringes is employed for the 110 projection of the Xe/Al system and the structure of the Xe nanocrystals is successfully imaged. The Xe images clearly represent projections of cuboctahedra with faces parallel to eight Al {111} planes truncated by six {100} planes. The results of multislice image simulations using a three-dimensional atomic model agreed well with the results obtained by the off-axial imaging technique. The usefulness of the technique is demonstrated with observations of crystal defects introduced into the Xe under intense 1000 keV electron irradiation.  相似文献   

18.
J. Hejna 《Scanning》1995,17(6):387-394
Two scintillation backscattered electron (BSE) detectors with a high voltage applied to scintillators were built and tested in a field emission scanning electron microscope (SEM) at low primary beam energies. One detector collects BSE emitted at low take-off angles, the second at high takeoff angles. The low take-off detector gives good topographic tilt contrast, stronger than in the case of the secondary electron (SE) detection and less sensitive to the presence of contamination layers on the surface. The high take-off detector is less sensitive to the topography and can be used for detection of material contrast, but the contrast becomes equivocal at the beam energy of 1 keV or lower.  相似文献   

19.
Colloidal particles have long been used as imaging standards for electron microscopy and, more recently, for scanning probe microscopy. We have analysed gold, polystyrene and silica colloidal particles by both transmission electron microscopy and atomic/scanning force microscopy in an attempt to determine if any can be truly used as 'standards' of shape and/or size. From the transmission electron micrographs, we have obtained precise information of the particle circumference and mean diameter. By comparing the ratio of these to the value for π, we obtained a measure of the sphericity of the particles. We have also shadowed the particles with metal at a known angle and have analysed the shadow length to determine the particles' heights and shapes. The height information obtained from the shadow length data collected from the transmission electron micrographs was then compared with that obtained by atomic/scanning force microscopy. Our results show that cleaned (washed) silica or polystyrene particles closely approach true spheres. In the case of gold particles, height data obtained from shadow lengths analysed in transmission electron micrographs show good agreement with that obtained from the atomic/scanning force microscopy images even without washing. However, the gold particles often deviate from sphericity. Based upon both the shape and the physical properties of the colloidal particles, silica would be the best choice as a standard. We also have noticed that metal shadowing of colloidal particle samples used for atomic/scanning force microscopy offers an advantage which we call a 'nanoscale metric' visible in the image directly at each particle site. This information can be important if one wishes to use samples prepared from colloidal particles simply and reliably to determine the probe shape for scanning probe microscopy from image deconvolution/restoration methods or as a calibration sample.  相似文献   

20.
Newbury DE  Ritchie NW 《Scanning》2011,33(3):174-192
The high throughput of the silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS) enables X-ray spectrum imaging (XSI) in the scanning electron microscope to be performed in frame times of 10-100?s, the typical time needed to record a high-quality backscattered electron (BSE) image. These short-duration XSIs can reveal all elements, except H, He, and Li, present as major constituents, defined as 0.1 mass fraction (10 wt%) or higher, as well as minor constituents in the range 0.01-0.1 mass fraction, depending on the particular composition and possible interferences. Although BSEs have a greater abundance by a factor of 100 compared with characteristic X-rays, the strong compositional contrast in element-specific X-ray maps enables XSI mapping to compete with BSE imaging to reveal compositional features. Differences in the fraction of the interaction volume sampled by the BSE and X-ray signals lead to more delocalization of the X-ray signal at abrupt compositional boundaries, resulting in poorer spatial resolution. Improved resolution in X-ray elemental maps occurs for the case of a small feature composed of intermediate to high atomic number elements embedded in a matrix of lower atomic number elements. XSI imaging strongly complements BSE imaging, and the SDD-EDS technology enables an efficient combined BSE-XSI measurement strategy that maximizes the compositional information. If 10?s or more are available for the measurement of an area of interest, the analyst should always record the combined BSE-XSI information to gain the advantages of both measures of compositional contrast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号