共查询到20条相似文献,搜索用时 0 毫秒
1.
支持向量机算法及应用 总被引:13,自引:4,他引:13
系统介绍了统计学习理论和支持向量机的基本思想,总结、比较了二分类和多分类2种情况下支持向量机的主要训练算法。与人工神经网络相比,分析了支持向量机的优点。归纳了支持向量机在模式识别、函数逼近、时间序列预测、故障预测和识别、信息安全、电力系统以及电力电子中的应用。 相似文献
2.
3.
4.
支持向量机的若干新进展 总被引:50,自引:0,他引:50
支持向量机是九十年代中期发展起来的机器学习技术,与传统的人工神经网络不同,前者基于结构风险最小化原理,后者基于经验风险最小化原理.实验表明,支持向量机不仅结构简单,而且技术性能尤其是泛化能力明显提高.本文是一篇综述,介绍支持向量机研究的一些新进展,希望引起大家的重视. 相似文献
5.
为了提高电子对抗设备对辐射源的识别能力,采用小波包变换法提取信号的时频谱特征,并引入支持向量机完成对辐射源的分类。小波包变换对信号局部的时频特征具有较好的分辨率,支持向量机分类器结构简单、可获得全局优化、泛化能力强。仿真结果表明,基于支持向量机的辐射源分类方法的正确率优于传统算法。 相似文献
6.
7.
睡眠问题逐渐成为当今快节奏社会人们对生命健康的关注重点,由此本文提出了一套基于支持向量机的睡眠监测系统.该系统利用生物传感器,对心率和呼吸信号的实时监测,通过Wi-Fi的方式将数据传送入上位机,由设计好的机器学习算法,对睡眠呼吸暂停低通气综合征等进行判断,并搭配终端APP便于使用者跟踪病情. 相似文献
8.
基于支持向量机的模式识别方法 总被引:1,自引:0,他引:1
基于统计学习理论的支持向量机(SVM)方法是现代智能技术的一个重要分支。SVM实现了结构风险最小化(SRM),而不是经验风险最小化(ERM),在保证分类精度的前提下,提高了分类器的泛化能力。着重讨论C-SVM原理,并在此基础之上,对算法进行了测试。测试结果表明,C-SVM分类算法具有较好的推广能力。 相似文献
9.
为确保电网能够安全、平稳地运行,且实现经济、科学地发展,应对其建立中长期的电力需求预测体系。对于传统方法在中长期电量预测时所面临的非线性问题,文中基于深度神经网络的方法,设计了一种电力需求的映射器与预测器,来完成对电力需求数据的自动编码。同时针对预测模型中复杂函数难以取得数值解的问题,通过使用混合支持向量机算法,设计并提出了基于各种模型优点的预测算法,进而实现更为精准的模型预测。最终通过与线性回归器等多种算法的对比实验结果可知,所提算法的收敛性最优,且预测平均绝对误差最低。 相似文献
10.
故障样本量是制约智能故障诊断发展的关键因素之一,然而实践中往往难以获取充足的故障样本。支持向量机是一种新型的机器学习和模式识别方法,在解决小样本、非线性及高维模式识别问题中表现出优越的性能。本文将欧氏距离分类引入到支持向量机解决支持向量机多类分类问题,提出了基于支持向量机和振动场的故障诊断方法。实验结果表明,该方法在故障诊断上计算速度和准确度令人满意,为类似的研究提供了借鉴意义和参考。 相似文献
11.
支持向量机及其算法研究 总被引:4,自引:1,他引:4
本文首先概要介绍了支持向量机的理论背景,然后结合目前一些主要的SVM训练方法以及它们之间的联系,比较了各种算法的优缺点。重点阐述了其中最有代表性的序贯最小优化(SMO)算法及其多种改进方案。最后指出了SVM及其算法进一步研究和亟待解决的一些问题。 相似文献
12.
针对支持向量机(svM)模型不能有效处理海量数据挖掘的问题,提出一种改进的基于主动学习的支持向量机(AL_SVM)方法。该方法首先将训练集随机划分为多个独立同分布的子集,并选择其中一个子集作为初始训练集来训练SVM得到初始分类器和支持向量集,然后根据已经得到的分类器信息在剩余样本集中选择对于分类器改进作用最大的有价值样本。并与已得到的支持向量集合并构成新训练集,以更新分类器,从而在保留重要支持向量信息的前提下,去除大量不重要的支持向量,一定程度上避免了过学习问题,提高了学习效率。实验表明,AL_SVM方法能够在保持学习器泛化能力的同时提高其学习效率。 相似文献
13.
支持向量机是在统计学理论基础上提出的一种新的机器学习方法,由于其出色的学习性能,该技术已成为机器学习界的研究热点,并成功地应用在文本分类、图像识别、生物信息处理等领域。这里简要介绍了支持向量机算法及其应用,并且讨论了其未来的发展方向。 相似文献
14.
适用于不平衡样本数据处理的支持向量机方法 总被引:6,自引:0,他引:6
支持向量机算法在处理不平衡样本数据时,其分类器预测具有倾向性.样本数量多的类别,其分类误差小,而样本数量少的类别,其分类误差大.本文针对这种倾向性问题,在分析其产生原因的基础上,提出了基于遗传交叉运算的改进方法.对于小类别训练样本,利用交叉运算产生新的样本,从而补偿了因训练数据类别大小差异而造成的影响.基于UCI标准数据集的仿真实验结果表明,改进方法比标准支持向量机方法具有更好的分类准确率. 相似文献
15.
16.
为了提高支持向量机的泛化能力,研究了Bagging集成学习方法对于支持向量机的提升作用,试验结果表明提升作用不明显。通过模拟数据扰动的方法,在标准数据集上通过试验定量比较了支持向量机和神经网络的稳定性,结果表明支持向量机相对于神经网络来说是一种稳定的分类器。在此基础上,提出了双重扰动法,即通过子空间法扰动数据特征,通过Bagging算法扰动数据分布,来达到提高基分类器之间差异性的目的,在标准数据集和故障诊断数据上进行了试验,试验结果表明,双重扰动法较好地提升了支持向量机的正确识别率。 相似文献
17.
基于最小二乘支持向量机的飞机备件多元分类 总被引:1,自引:0,他引:1
飞机后续备件配置直接关系到装备的战备完好率和寿命周期费用,对备件的正确分类是进行备件配置决策的前提。支持向量机是采用结构风险最小化原则代替传统统计学中的基于大样本的经验风险最小化原则的新型机器学习方法,具有出色的学习分类能力和推广能力。研究了新型支持向量机算法-最小二乘支持向量机,设计了基于多元分类的最小二乘支持向量机,在此基础上,建立了飞机备件多元分类模型,并对某机型的备件进行了分类。结果表明,基于最小二乘支持向量机的飞机备件多元分类方法是有效、可行的。 相似文献
18.
一种基于类融合向量的支持向量机及其在语音识别系统中的应用 总被引:1,自引:0,他引:1
支持向量机可以通过产生的支持向量来概括数据集合中的信息,其分类函数仅依赖于一小部分训练样本,即支持向量,这使得它对噪声数据非常敏感.本文采用数据融合的方法加以改进,提出了一种新的基于类融合向量的支持向量机,降低了对噪声数据和较大偏差值的敏感性,提高了算法的容噪性能,并成功地应用于语音识别系统中,取得了较好的效果. 相似文献
19.
针对单一分类器人脸检测非常耗时的问题,提出了一种由粗到精的融合分类器结构模式加速人脸检测。该系统分为3个阶段:前两个阶段,使用Adaboost级联分类器快速排除大量简单的非人脸图像;最后一个阶段.使用非线性的支持向量机分类器,将已通过前两个阶段检测的复杂图像准确归类为人脸或非人脸。实验结果表明系统性能良好。 相似文献