首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
催化灼烧法     
应用范围克劳斯尾气硫化合物的低温氧化成SO_2和在含CO_2量甚高气流中H_2S的选择性氧化成硫或SO_2。原料气含H_2S、元素硫或如COS、CS_2、RSH的有机硫的气流。过程概述被处理的气体在加入控制过量的空气之前先予热到所需温度。之后全部  相似文献   

2.
应用范围酸性气流中H_2S的选择性氧化成SO_2或元素硫。原料气 SO_2转化成H_2S后的克劳斯尾气,用于处理酸性天然气、地热利用装置排出气体的胺洗涤塔来的贫酸气。过程概述原料气为空气混合,与放热的选择性氧化反应的产物换热而被加热,之  相似文献   

3.
比文法(BSRP)     
应用范围:净化制硫装置的尾气,以满足大气污染标准。原料气:克劳斯硫磺回收装置的尾气。概述:比文过程由两个步骤组成。过程的第一步是克劳斯尾气中的所有含硫化合物(SO_2、Sx、COS、CS_2)转化成 H_2S。采用燃料气和空气的燃烧热气,与尾气混合加热到反应温度。如果尾气不含有充足的 H_2和 CO,这就不能把所有的 SO_2和 Sx 还原成H_2S,那么这种燃烧可以在空气不足的情况下进行。然后,热气混合物通过催化剂床  相似文献   

4.
为满足大部份H_2S必须转化成元素硫的需要,Claus硫磺回收装置应具有灵活性.H_2S负荷可以降到低于5%,而含其他硫化合物的附加气(即酸性水汽提气)不需要进一步处理也可以加工到使尾气中H_2S:SO_2为2:1.烃、氨和氰化物也可以高浓度进料,而不会降低硫磺质量.这些进料仅仅受必需的空气剩余量限制,因为残余氧和附加气中生成的SO_2由主气流中的H_2S补偿.硫磺回收单元进料气中的H_2S含量,工艺上可以在几乎100%到约5%(V)的范围内变化.除空气以外氧的使用,对产品的改进,生产能力的提高或投资的降低都很有利,当必须使用氧时,不仅可低于20%(V),也可以高于20%(V).掌握处理含硫气的这些方法的关键在于燃烧器设备和燃烧室的设计.  相似文献   

5.
应用范围将H_2S转化成可回收的元素硫原料气酸气流. 概述:MCRC系统改进了克劳斯过程,降低排入大气中的硫.该过程在一个处理能力为1.100Iung~-t/d的工厂得到证实. 将酸性气流引入克劳斯装置,通过所用的那种反应炉.空气的引入量要细心控制,将H_2S部份氧化为SO_2,使克劳斯反应得以进行.空气量太大或太小将会降低收率.从反应炉来的热气流通过废热锅炉到第一冷凝器,汽相中的元素硫在此冷凝并被抽出再流到第一转化  相似文献   

6.
应用范围:废气流的脱硫原料气:克劳斯装置尾气产品:浓缩的 SO_2气体适于循环到克劳斯装置或者进一步加工,例如制成硫酸。概述:首先把克劳斯装置尾气中原有的所有含硫化合物(H_2S、COS、CS_2等)灼烧转化成 SO_2。热气在废热锅炉中冷却,然后骤冷并送到 SO_2吸收塔中去。吸收塔送入亚硫酸钠贫液,亚硫酸钠吸收 SO_2,并与它反应生成亚硫酸氢钠。净化  相似文献   

7.
丹麦托普索公司湿气硫酸法(简称WSA法)可以成功处理含有较高的CO_2、COS和有机硫的废气,不适于一般脱硫装置加工的总硫浓度太低的气体,此法也可以处理。硫的回收率为97.5~99%,产品为工业用的浓硫酸,同时可生产高压蒸汽。 WSA法适用于:①用煤或重油生产氨、甲醇或代用天然气的工厂;②含有H_2S.COS、含硫烃类,氰化物和NH_3的焦炉气;③尾气中CO_2/H_2S比率较高的天然气净化厂。 WSA法由三步组成(图1)。①原料气同过量空气混合后进入催化灼烧装置,在催化剂上于200℃下使H_2S、COS、有机硫和烃类等氧化为SO_2和SO_3。催化剂的烧区  相似文献   

8.
目前,对淨除瓦斯中硫化物的要求增高了。测定瓦斯中有机硫化物总含量的最普遍的方法是將此化合物燃烧或氧化成SO_2,再將SO_2以硫酸盐形式测定。这个测定方法所花费的时間较长,在测定微量的硫时特别困难。此外,这个方法所用的燃烧空气必須是淨化过的。文献中[1]曾提到,瓦斯中有机硫化物总含量的测定是根据这些硫化合物与氫气或水蒸汽作用而生成H_2S的原理,其化学反应式如下。 COS 4H_2=CH_4 H_2S H_2O CS_2 4H_2=CH_4 2H_2S 轉化成硫化氫的过程是在有氫气存在下在接触剂上进行的。但此时,瓦斯和接触剂中的硫化物建立了平衡,平衡的破坏会引起硫的吸收或分离,使测定中产生誤差,或者是需要延长的时間將接触剂中的硫逐出。  相似文献   

9.
应用范围:可从气流中脱除 H_2S 达到脱硫率为99.9%的程度,特别适合于 H_2S 含量低或 CO_2/H_2S 比例高的气流。产品质量:净化气 H_2S 含量低于10ppm。所生产的元素硫是相当干的滤并(硫粒度为2微米),或者进一步用熔硫釜加工。概述:以1、4—萘醌—2—磺酸为氧化—还原催化剂而配成的碱性溶液(PH=8.5),在吸收塔中与原料气相接触。H_2S 与碳酸钠反应而生成硫氢化钠和碳酸氢钠。前者被催化剂氧化而生成粒度很细(2微米)的元素硫,而萘醌磺酸盐则还原为萘氢醌磺酸盐。  相似文献   

10.
国内简讯     
<正> 分析ppb级硫化合物的火焰光度检测器西南化工研究院第四研究室设计、研制成功了高灵敏的火焰光度检测器(FPD)。 FPD是一种对含硫(磷)化合物具有高灵敏度和高特效性的检测器。主要用于硫、磷化合物的分析。特别是在微量分析上,获得广泛的应用。在大气控制分析方面,主要用来分析大气中的SO_02、H_2S、甲硫醇、甲硫醚、香烟烟雾组成、高含硫天然气燃烧产物中的含硫化合物以及纸浆厂排放污染物等。在农药和石油化工方面,FPD的应用也很广泛。如农药残留物的分析和石油化工厂所用的原料气及脱硫后净化气中微量硫化物的分析等。  相似文献   

11.
Bio-SR法使用细菌再生天然气处理液效率高、成本低、无废物并易于操作。用来处理酸性采矿废物的细菌是在1947年发现的。目前石化工厂和炼油中用Bio-SR法处理酸性气体。第一座商业Bio-SR法装置建于1984年,在处理炼油厂胺原料气和克劳斯原料气方面获得成功,其基本流程见图1。吸收器(1)中的硫酸铁与酸气接触,溶液吸收了硫化氢并氧化成元素硫,同时硫酸铁被还原成硫酸亚铁,其反应如下: H_2S+Fe_2(SO_4)_3→S↓+2FeSO_4+H_2SO_4 元素硫在分离器(2)中从吸收液中分离,脱硫后的吸收液被送入生物反应器(3),细菌在有空气接触  相似文献   

12.
应用范围在液相中借催化氧化从气流中脱除H_2S。原料气具有低浓度H_2S(高达30克/标米~2)的气体或废气。过程概述络合铁脱硫法在10—50℃间选择性地从废空气、废气或产品气中脱除H_2S直到低至几个ppmv。用于洗涤的络合铁溶液中含有起催化作  相似文献   

13.
应用范围:尾气净化原料气:克劳斯装置的尾气产品:液硫概述:本过程实质上是克劳斯过程的延伸,尾气中的 H_2S 和 SO_2在低于反应气体混合物的硫露点的温度下反应:2H_2S+SO_2→3S+2H_2O+35千卡因为平衡转化率是随着温度降低而变得更完全,可以获得比一般克劳斯装置更高的硫收率。反应发生在有氧化铝催化剂存在的情况下。最先的两个工业装置是采用特制的  相似文献   

14.
本文介绍了七十年代末期发展起来的一种选择性催化氧化H_2S成SO_2和元素硫的新工艺——Selectox制硫法。讨论了该法的工艺流程、崔化剂、工业应用以及应用时应注意的问题。  相似文献   

15.
甲基二乙醇胺(MDEA)是一种叔胺,它具有选择性脱除H_3S的能力,而在净化气流中保留大量CO_2.已知的应用MDEA装置的领域包括:硫磺装置原料气的提浓、从制硫装置尾气中回收H_2S以及天然气中选择性地脱除H_2S.哥厄(Goar)等已经讨论过制硫装置原料气提浓的有利之处.本文将讨论从一个MDEA气体处理装置取得的结果,该装置设计为把进料中CO_2的50-60%保留于净化气中,而同时又达到1格令/100标呎~3H_2S的规格要求.进吸收塔的气体量为80×10~6标呎~3/日,操作压力为940磅/吋~2(表压).  相似文献   

16.
美国联合炭化物公司新近发展了一个处理低H_2S浓度的酸气及克劳斯尾气达到严格的排放标准的方法。方法的中心步骤是使用三乙醇胺溶液选择吸收SO_2,它与克劳斯过程等结合成为组合UCAP法。此法包含四个工艺段: 1.克劳斯反应段: 反应:3H_2S SO_2→3 S H_2S 2H_2O 原料酸气中的H_2S与下游吸收段送来的SO_2进行克劳斯反应,如反应式所示,控制  相似文献   

17.
美国联合炭化物公司新近发展了一个处理低H_2S浓度的酸气及克劳斯尾气达到严格的排放标准的方法。方法的中心步骤是使用三乙醇胺溶液选择吸收SO_2,它与克劳斯过程等结合成为组合UCAP法。此法包含四个工艺段: 1.克劳斯反应段: 反应:3H_2S SO_2→3 S H_2S 2H_2O 原料酸气中的H_2S与下游吸收段送来的SO_2进行克劳斯反应,如反应式所示,控制  相似文献   

18.
正本发明属气体分离技术领域,提供了一种脱除气体中的H_2S并回收硫磺的方法,包括以下步骤:步骤一:含硫气体在常温下通过吸附剂床层,其中的H_2S被吸附;步骤二:将吸附了H_2S的吸附剂床层加热至一定的温度后,向吸附剂床层通入SO_2,利用克劳斯原理,将所吸附的H_2S催化氧化成单质硫磺,完成吸附剂的再生,硫磺蒸气从吸附剂床层出来后被  相似文献   

19.
在天然气净化和含硫原油加工过程中产生大量的 H_2S 气体,为了保护环境和回收元素硫,工业上普遍采用克劳斯过程处理含有 H_2S 的酸性气体,其反应方程式如下:①H_2S 3/2O_2=SO_2 H_2O ③2H_2S SO_2=3/n S_n 2H_2O反应①和②是在高温燃烧炉中进行的。在催化反应区(低于538℃)除了发生反应②外,还进行下述有机硫化物的水解反应:③COS H_2O=H_2S CO_2 ④CS_2 2H_2O=2H_2S CO_2工业装置使用天然铝矾土催化剂的总硫转化率在80—85%左右,未转化的各种硫化物均以 SO_2的形式排入大气,严重污染了环境;改用活性氧化铝催化剂后,总硫转化率可提高到  相似文献   

20.
稠油注汽热采过程中通常伴随着H_2S的产生,针对此现象,以稠油非含硫模型化合物正十六烷及4种金属盐(MgSO_4、Al_2(SO_4)_3、Na_2SO_4及CaSO_4)为研究对象,开展热模拟实验,对稠油热采过程中硫酸盐热化学还原(TSR)生成H_2S机理进行研究。实验表明:反应产物以烃类(C_1~C_5)、无机气体(H_2、CO_2、H_2S)、MgO以及噻吩类、硫醇和硫醚类物质为主;4种金属盐TSR生成H_2S量顺序为:Al_2(SO_4)_3CaSO_4MgSO_4Na_2SO_4;生成CO_2量顺序为:Al_2(SO_4)_3Na_2SO_4MgSO_4CaSO_4。原因在于金属阳离子电荷数越大自催化作用越强,产生H_2S越多;不同硫酸盐体系反应路径不同。推导了正十六烷与MgSO_4的TSR反应过程:包括质子化作用、热解反应、硫代硫酸盐向有机硫化物转化、H_2S自催化作用及硫化物热解和水解等反应,其中自催化作用是生成H_2S的主要途径。最后,通过计算得到正十六烷与MgSO_4的TSR反应活化能为61.498 kJ/mol。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号