首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a new channelization code tree structure, namely an ROVSF (rotated-orthogonal variable spreading factor) code tree, is defined and investigated. Most existing code assignment schemes are investigated on the OVSF (orthogonal variable spreading factor) code tree in WCDMA systems. The main work of this investigation is to exploit and justify the new properties of the ROVSF code tree. We show that the ROVSF code tree offers the same code capability to that of the conventional OVSF code tree, but our ROVSF code tree additionally has the code-locality capability. With the code-locality capability, a fast code-assignment strategy is developed on the ROVSF code tree. Compared to existing code assignment schemes on OVSF code trees, a fast code assignment scheme is developed with lower search costs and a low blocking rate, due to its code-locality capability. Finally, the simulation results illustrate that our proposed scheme on the ROVSF code tree actually has lower search costs and a better blocking rate.This work was supported by the National Science Council of the R.O.C. under grant nos. NSC91-2213-E-194-041 and NSC91-2213-E-194-042.  相似文献   

2.
Power/ground noise is a major source of VLSI circuit timing variations. This work aims to reduce clock network induced power noise by assigning different signal polarities (opposite switchings) to clock buffers in an existing buffered clock tree. Three assignment algorithms are proposed: 1) partitioning; 2) 2-coloring on minimum spanning tree; and 3) recursive min-matching. A post-processing of clock buffer sizing is performed to achieve desired clock skew. SPICE based experimental results indicate that our techniques could reduce the average peak current and average delay variations by 50% and 51%, respectively.   相似文献   

3.
The authors study codeword index assignment to allow for progressive image transmission of fixed rate full-search vector quantization (VQ). They develop three new methods of assigning indices to a vector quantization codebook and formulate these assignments as labels of nodes of a full-search progressive transmission tree. The tree is used to design intermediate codewords for the decoder so that full-search VQ has a successive approximation character. The binary representation for the path through the tree represents the progressive transmission code. The methods of designing the tree that they apply are the generalized Lloyd algorithm, minimum cost perfect matching from optimization theory, and a method of principal component partitioning. Their empirical results show that the final method gives intermediate signal-to-noise ratios (SNRs) that are close to those obtained with tree-structured vector quantization, yet they have higher final SNRs.  相似文献   

4.
A tree code, asymptotically optimal for stationary Gaussian sources and squared error distortion, is applied suboptimally to encode the discrete cosine transform (DCT) of image subblocks. The variance spectrum of each block DCT is estimated and specified uniquely by a set of one-dimensional autoregressive parameters. The average pel rate for each block is allowed to vary to meet the specification of the same average distortion per block. Since the variance spectrum and rate are different for every block. so is the code tree. Comparative coding simulations with a 256×256 and 512×512 image show that DCT tree coding with postcoding is clearly superior to DCT quantization and that a variable block rate assignment gains about 3 dB over a fixed block rate assignment  相似文献   

5.
应用Variable-Tail编码压缩的测试资源划分方法   总被引:13,自引:6,他引:13       下载免费PDF全文
测试资源划分是降低测试成本的一种有效方法.本文提出了一种新的有效的对测试数据进行压缩的编码:Variable-Tail编码,并构建了基于该编码的测试资源划分方案.文章的理论分析和实验研究表明了采用Variable-Tail编码能取得比Golomb编码更高的压缩率,针对多种模式下的测试向量均能提供很好的压缩效果,解码器的硬件也较易实现.文章还提出了一种整合不确定位动态赋值的测试向量排序算法,该算法可以进一步提高测试压缩率.文章最后用实验数据验证了所提编码和排序算法的高效性.  相似文献   

6.
In this paper, a top down code search scheme is proposed that identify an optimum OVSF code for assignment at the base station of CDMA wireless networks. An optimum vacant code is the one whose usage produces least code blocking compared to other eligible codes. This scheme provides least code blocking compared to existing schemes without reassignments. In addition, the codes searched during locating the optimum code are significantly less than other existing schemes. The call establishment delay which is a significant factor for real time applications is directly proportional to the number of searches and should be low. The design is explained for single code, and extended to multi code assignment to improve code blocking. The multi code assignment is done using four ways. The first and second multi code schemes uses minimum and maximum rakes for a fixed rate system. The third scheme called scattered multi code scheme divide the incoming call into rate fractions equal to number of rakes available in the system, and each rate fraction is handled in a similar way in which the new call is handled in single code scheme. The rate fractions may be scattered or grouped in the code tree. The fourth multi code scheme, namely grouped multi code scheme allocates codes to all the fractions as close as possible. This maximizes future higher rate vacant codes availability by leaving a complete sub tree vacant when call using multi code ends.  相似文献   

7.
In this paper, we propose a joint subcarrier power allocation (SPA) and code assignment scheme for the synchronous multirate multicarrier direct-sequence code-division multiple-access (MC-DS-CDMA) system with time- and frequency-domain spreadings. Based on the newly defined metric multiple-access interference (MAI) coefficient, the proposed code assignment strategy can quantitatively predict the incurred MAI before assigning a spreading code. The SPA mechanism aims to maximize the received signal power. In addition to lowering the MAI, the proposed code assignment strategy further considers the compactness of the assigned codes in the entire 2-D tree structure. The simulation results show that the proposed joint SPA and code assignment strategy not only can reach a better received signal quality but can also achieve a high call admission rate.  相似文献   

8.
In universal terrestrial radio access (UTRA) systems, orthogonal variable spreading factor (OVSF) codes are used to support different transmission rates for different users. In this paper, we first define the flexibility index to measure the capability of an assignable code set in supporting multirate traffic classes. Based on this index, two single-code assignment schemes, nonrearrangeable and rearrangeable compact assignments, are proposed. Both schemes can offer maximal flexibility for the resulting code tree after each code assignment. We then present an analytical model and derive the call blocking probability, system throughput and fairness index. Analytical and simulation results show that the proposed schemes are efficient, stable and fair.  相似文献   

9.
孙向涛  龚克 《电视技术》2008,32(4):11-13
在地面数字电视广播系统中,为了满足不同信道条件和不同接收设备的用户需要,提出了一种多级编码调制的方案.把广播数据分成多个优先级,使用多级编码调制和集分割映射技术,为不同优先级的数据提供不同的差错保护.解码时采用多阶段译码的方法,使得用户可以根据自身信道的质量或者接收设备的能力,获得相应的数据传输率.仿真结果表明,该方案在AWGN和多径信道下都具有较好的性能.  相似文献   

10.
Communication and Coordination in Wireless Sensor and Actor Networks   总被引:3,自引:0,他引:3  
In this paper, coordination and communication problems in wireless sensor and actor networks (WSANs) are jointly addressed in a unifying framework. A sensor-actor coordination model is proposed based on an event-driven partitioning paradigm. Sensors are partitioned into different sets, and each set is constituted by a data-delivery tree associated with a different actor. The optimal solution for the partitioning strategy is determined by mathematical programming, and a distributed solution is proposed. In addition, a new model for the actor-actor coordination problem is introduced. The actor coordination is formulated as a task assignment optimization problem for a class of coordination problems in which the area to be acted upon needs to be optimally split among different actors. An auction-based distributed solution of the problem is also presented. Performance evaluation shows how global network objectives, such as compliance with real-time constraints and minimum energy consumption, can be achieved in the proposed framework with simple interactions between sensors and actors that are suitable for large-scale networks of energy-constrained devices.  相似文献   

11.
This paper presents an optimal dynamic code assignment (DCA) scheme using orthogonal variable-spreading-factor (OVSF) codes. The objective of dynamic code assignment is to enhance statistical multiplexing and spectral efficiency of W-CDMA systems supporting variable user data rates. Our scheme is optimal in the sense that it minimizes the number of OVSF codes that must be reassigned to support a new call. By admitting calls that would normally be blocked without code reassignments, the spectral efficiency of the system is also maximized. Simulation results are presented to show the performance gain of dynamic code assignment compared to a static assignment scheme in terms of call blocking rate and spectral efficiency. We also discuss various signaling techniques of implementing our proposed DCA scheme in third-generation wideband CDMA systems  相似文献   

12.
In this paper, call admission and code allocation schemes are proposed to provide service differentiation in the forward link of wideband code-division multiple-access (WCDMA) systems. In particular, this paper proposes multiple leaf code reservation (MLCR) schemes, where different numbers of orthogonal variable spreading factor (OVSF) leaf codes (i.e., codes of the lowest layer of the OVSF code tree) are reserved to differentiate users with different bandwidth requirements. Leaf codes are only reserved for as long as the call admission process lasts. Once the decision of whether a new request is admitted or not has been made, a Code Dereservation procedure is carried out to increase flexibility in the code assignment phase. The performance of these MLCR strategies with/without code reassignments is then evaluated. Analysis shows that MLCR schemes are also useful in improving fair access among different traffic classes. In addition, perfect fair access among requests with different data rates can be achieved when code reassignments are jointly employed with the proposed OVSF-code reservation schemes.  相似文献   

13.
The use of OVSF codes in WCDMA systems has offered opportunities to provide variable data rates to flexibly support applications with different bandwidth requirements. Two important issues in such an environment are the code placement problem and code replacement problem. The former may have significant impact on code utilization and, thus, code blocking probability, while the latter may affect the code reassignment cost if dynamic code assignment is to be conducted. The general objective is to make the OVSF code tree as compact as possible so as to support more new calls by incurring less blocking probability and less reassignment costs. Earlier studies about these two problems either do not consider the structure of the OVSF code tree or cannot utilize the OVSF codes efficiently. To reduce the call blocking probability and the code reassignment cost, we propose two simple yet efficient strategies that can be adopted by both code placement and code replacement: leftmost and crowded-first. Numerical analyses on call blocking probability and bandwidth utilization of OVSF code trees when code reassignment is supported are provided. Our simulation results show that the crowded-first strategy can significantly reduce, for example, the code blocking probability by 77 percent and the number of reassignments by 81 percent, as opposed to the random strategy when the system is 80 percent fully loaded and the max SF = 256.  相似文献   

14.
Frequency selective fading may affect the orthogonality of the spreading codes in the multi-carrier direct sequence code division multiple access (MC-DS-CDMA) systems. In this paper, we define a new performance metric called the multiple access interference (MAI) coefficient for the MC-DS-CDMA system to quantitatively predict the impact of inter-code interference with the time- and frequency-domain spreading in a frequency selective fading channel. With the help of MAI coefficient, a novel interference avoidance code assignment strategy is proposed. By jointly considering the incurred MAI effect and the blocking probability in the code tree structure, the proposed interference avoidance code assignment method can effectively reduce the MAI for the multi-rate MC-DS-CDMA system, while maintaining very good call blocking rate performance.  相似文献   

15.
For achieving high transmission rate in mobile multimedia communications, 3G WCDMA systems adopt the Orthogonal Variable Spreading Factor (OVSF) code tree to assign a single channelization code for each accepted connection. Based on the orthogonal characteristic of an OVSF code tree, an allocated code blocks the channelization codes that are on the descendant branches and the ancestral codes of the allocated code. Several researches have been proposed to overcome the code-blocking problem for maximizing system utilization. By using both the code assignment and reassignment mechanisms, the system utilization and code blocking can be improved. Nevertheless, the data rate of traffic classes in such single code assignment system should be powers of two of the basic rate, which is impractical and wastes the system capacity when the required rate is not powers of two of the basic rate. A good solution is to assign multiple codes to a new connection, but causes two drawbacks: high complexity of handling multiple codes and high cost from using more number of rake combiners. Consequently, there is a trade-off between waste rate and complexity of handling multiple codes assignments. In previous researches, high computation complexity of assigning multiple codes for a connection and large number of reassignment codes suppressed the advantage of reducing waste rate. Therefore, we propose an adaptive efficient partition algorithm with the Markov Decision Process (MDP) analysis approach to reduce the large number of reassignment codes while improving waste rate. There are two main motivations in the proposed approach. First, we propose an adaptive efficient partition algorithm to determine multiple codes based on the current state of the OVSF code tree for the new incoming connection. Second, after determining the multiple codes, we adopt the MDP analysis to assign the least-cost code for each determined code. Numerical results demonstrate that the proposed MDP approach yields the least number of reassignments and the least number of codes per connection while reducing waste rate significantly, as compared to other approaches.  相似文献   

16.
Most third‐generation and beyond wideband code division multiple access networks use the orthogonal variable spreading factor code tree for channelization codes. The codes in this code tree are limited and the performance of a wireless network depends upon the code assignment for new calls. In this paper, we introduce a term called ‘wastage capacity’, which gives us the amount of wastage caused when a code (single or multiple) with a data rate higher than the rate of the incoming call is assigned to it. We suggest two methods to keep wastage capacity below an arbitrary threshold value or zero. In the first method, we devised an algorithm in which wastage up to a certain threshold would be tolerated and the minimum rakes to get this wastage capacity were identified. In the second approach, we reduced the wastage capacity to zero irrespective of the number of rakes at the expense of higher cost and complexity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Over the last few years, graph partitioning has been recognized as a suitable technique for optimizing cellular network structure. For example, in a recent paper, the authors proposed a classical graph partitioning algorithm to optimize the assignment of cells to Packet Control Units (PCUs) in GSM-EDGE Radio Access Network. Based on this approach, the quality of packet data services in a live environment was increased by reducing the number of cell re-selections between different PCUs. To learn more about the potential of graph partitioning in cellular networks, in this paper, a more sophisticated, yet computationally efficient, partitioning algorithm is proposed for the same problem. The new method combines multi-level refinement and adaptive multi-start techniques with algorithms to ensure the connectivity between cells under the same PCU. Performance assessment is based on an extensive set of graphs constructed with data taken from a live network. During the tests, the new method is compared with classical graph partitioning approaches. Results show that the proposed method outperforms classical approaches in terms of solution quality at the expense of a slight increase in computing time, while providing solutions that are easier to check by the network operator.  相似文献   

18.
针对无线物理层安全编码不能保证信息在有噪信道下进行强安全传输的问题,该文提出一种基于部分陪集的强安全编码方法。首先证明了当且仅当陪集母码的对偶码的最小汉明距离大于信息泄露位数时,利用部分陪集编码能够保证信息的强安全传输;然后证明了陪集编码的一系列性质,基于这些性质可以将陪集间最小汉明距离计算降低为1次查表运算,进而设计了一种基于树形深度优先的最大可用陪集集合搜索算法;最后分析得出一些典型线性分组码的抗窃听信道信息泄露和抗合法信道传输噪声的能力,以及相应的最大可用陪集集合。当陪集母码为BCH(15,11)的对偶码时,与传统陪集编码方案相比,该方法对合法信道的信道质量要求降低了5 dB,同时能够保证信息传输的强安全性。  相似文献   

19.
A tree decomposition of the coordinates of a code is a mapping from the coordinate set to the set of vertices of a tree. A tree decomposition can be extended to a tree realization, i.e., a cycle-free realization of the code on the underlying tree, by specifying a state space at each edge of the tree, and a local constraint code at each vertex of the tree. The constraint complexity of a tree realization is the maximum dimension of any of its local constraint codes. A measure of the complexity of maximum-likelihood (ML) decoding for a code is its treewidth, which is the least constraint complexity of any of its tree realizations.It is known that among all tree realizations of a linear code that extends a given tree decomposition, there exists a unique minimal realization that minimizes the state-space dimension at each vertex of the underlying tree. In this paper, we give two new constructions of these minimal realizations. As a by-product of the first construction, a generalization of the state-merging procedure for trellis realizations, we obtain the fact that the minimal tree realization also minimizes the local constraint code dimension at each vertex of the underlying tree. The second construction relies on certain code decomposition techniques that we develop. We further observe that the treewidth of a code is related to a measure of graph complexity, also called treewidth. We exploit this connection to resolve a conjecture of Forney's regarding the gap between the minimum trellis constraint complexity and the treewidth of a code. We present a family of codes for which this gap can be arbitrarily large.  相似文献   

20.
该文针对支持电压频率岛的NoC能耗优化问题,提出了基于电压频率岛划分、分配以及任务映射的能耗优化方法。该方法通过基于处理器可靠性约束的电压频率岛划分,降低了处理器能耗;利用近凸区域选择的电压频率岛分配策略,减少了不同电压岛间复杂路由器的个数;借助量子粒子群算法优化了NoC映射,降低了系统的通信能耗。实验结果表明,该文算法在满足NoC处理器可靠性要求的前提下,可显著降低NoC系统能耗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号