首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EfFects of heat treatments on hardness and dry wear properties of a semi-solid processed Fe-26.96 wt pct Cr- 2.91 wt pct C cast iron were studied. Heat treatments included tempering at 500℃, destabilisation at 1075℃ and destabilisation at 1075℃ plus tempering at 500℃, all followed by air cooling. Electron microscopy revealed that, in the as-cast condition, the primary proeutectic austenite was round in shape while the eutectic M7C3 carbide was found as radiating clusters mixed with directional clusters. Tempering did not change the microstructure significantly when observed by scanning or transmission electron microscopy. Destabilisation followed by air cooling led to a precipitation of secondary M23C6 carbide and a transformation of the primary austenite to martensite. Precipitation behaviour is comparable to that observed in the conventionally cast iron. Tempering after destabilisation resulted in a higher amount of secondary carbide precipitation within the tempered martensite in the eutectic structure. Vickers macrohardness and microhardness in the proeutectic zones were measured. Dry wear properties were tested by using a pin-on-disc method. The maximum hardness and the lowest dry wear rate were obtained from the destabilisation-plus-tempering heat treatment due to the precipitation of secondary carbides within the martensite matrix and a possible reduction in the retained austenite.  相似文献   

2.
Microstructure and mechanical properties of high boron white cast iron   总被引:1,自引:0,他引:1  
In this paper, high boron white cast iron, a new kind of wear-resistant white cast iron was developed, and its microstructure and mechanical properties were studied. The results indicate that the high boron white cast iron comprises a dendritic matrix and an interdendritic eutectic boride in as-cast condition. The distribution of eutectic boride with a chemical formula of M2B (M represents Cr, Fe or Mn) and with a microhardness of HV2010 is much like that of carbide in high chromium white cast iron. The matrix includes martensite and a small amount of pearlite. After quenching in air, the matrix changes to martensite, but the morphology of boride remains almost unchanged. In the course of austenitizing, a secondary precipitation with the size of about 1 μm appears, but when tempered at different temperature, another secondary precipitation with the size of several tens of nanometers is found. Both secondary precipitations, which all forms by means of equilibrium segregation of boron, have a chemical formula of M23(C,B)6. Compared with high chromium white cast iron, the hardness of high boron white cast iron is almost similar, but the toughness is increased a lot, which attributes to the change of matrix from high carbon martensite in the high chromium white cast iron to low carbon martensite in the high boron white cast iron. Moreover, the high boron white cast iron has a good hardenability.  相似文献   

3.
High chromium white irons solidify with a substantially austenitic matrix supersaturated with chromium and carbon. The subcritical heat treatment can destabilize the austenite by precipitating chromium-rich secondary carbides and other special carbides. In the as-cast condition the eutectic carbides are (Fe,Cr)7C3 and (Fe4.3Cr2.5Mo0.1)C3. The initial secondary carbide precipitated is (Fe,Cr)23C6 after heat-treating at 853 K for 10 h. There are MoC, Fe2MoC and -carbide precipitating, and (Fe,Cr)23C6 transforms to M3C after 16 h at 853 K. The -carbide and (Fe,Cr)23C6 accomplish transformation to M3C and the matrix changes from martensitic to pearlitic after 22 h at 853 K. Thereby, in the subcritical heat treatment process, the initial secondary carbide precipitated is (Fe,Cr)23C6, followed by -carbide, MoC and Fe2MoC. In addition, there are two in situ transformations from (Fe,Cr)23C6 and -carbide to M3C carbides.  相似文献   

4.
以TiCp粉末和水雾化Cr15高铬铸铁粉末为原料,采用粉末冶金液相烧结技术制备TiCp增强高铬铸铁复合材料。研究了TiCp含量对高铬铸铁的物相组成、显微组织和力学性能的影响。研究结果表明,全致密的TiCp增强高铬铸铁基体复合材料的构成相为TiC、M7C3型碳化物、马氏体和少量奥氏体;随着TiCp添加量增大,金属基体逐步呈孤岛状,并在其中析出越来越多的M7C3型碳化物,同时TiCp逐步呈连续网状分布;同时,其硬度稳步提升,而抗弯强度和冲击韧性降低。当TiCp添加量为20wt%时烧结态复合材料具有最佳综合力学性能。此时硬度为HRC 66.8 ,冲击韧性为6.86 J/cm2,抗弯强度为1 343.10 MPa。当TiCp添加量为25wt%时硬度达到最大值HRC 67.20 。   相似文献   

5.
The recrystallization behavior in a range of annealing temperature from 1020 to 1280 °C in a directionally solidified cobalt-base superalloy was studied. Local recrystallization first appeared at 1040 °C. The recrystallized volume increased rapidly as increasing the annealing temperature. Pinning effect of all carbides (M23C6, M7C3 and MC) was observed and large amount of twin formed at low annealing temperature. The size of the recrystallized grains increased significantly at high annealing temperatures accompanied with the sharp decrease of twin. The effect of annealing temperature and the role of carbide and twin on the development of the recrystallization were discussed.  相似文献   

6.
Microstructural characterization of high-carbon ferrochromium   总被引:2,自引:0,他引:2  
《Materials Characterization》1996,36(4-5):349-356
Light optical and scanning electron microscopy techniques were used for high-carbon ferrochromium microstructural analysis. Different microstructures were observed for industrially and laboratory-produced ferroalloys. Primary carbides of M7C3 with chromium ferrite were found in the industrially produced, slowly solidified, and cooled ferroalloy, while primary M7C3 carbides accompanied a eutectic mixture of M7C3 carbides and chromium ferrite in the laboratory-melted and in the water-solidified and water-cooled materials. Different microstructural arrangements are directly related to the friability properties of this material, which characterizes its resistance to abrasion on handling and impact. In ferrochromium upgraded by carbon content reduction, the eutectic M7C3 hexagonal carbides are partly replaced by M23C6 dendritic carbides. The presence of dendritic carbides in the ferrochromium eutectic microstructure can be interpreted as a proof of a lower carbon content, raising the commercial value of the ferroalloy. The hexagonal M7C3 carbides exhibited a central hollow along the longitudinal axis, and on metallographic samples they looked like screw nuts. A model of the solidification mechanism for such crystals is proposed.  相似文献   

7.
The influence of the welding thermal conditions exemplified by heat input and heat treatment after welding on the structure of the heat affected zone (HAZ) UNS S31803 has been analysed. The post weld treatment was used to create the precisely defined thermal conditions for the decomposition of primary phases in the HAZ, by a multi-layer welding thermal cycle stimulation. Detailed analyses of the microstructure and chemical composition of the phases in the different post welded conditions were performed by scanning electron microscopy (SEM) combined with energy dispersive spectrometry (EDS) and transmission electron microscopy (TEM). Three types of secondary precipitates have been observed: secondary austenite (γ2), carbides: M23C6 and M7C3. The dependence of the secondary austenite volume fraction and morphology in the HAZ on thermal cycle have been interpreted. The eutectoid decomposition of the primary phases in the analysed thermal conditions was confirmed.  相似文献   

8.
研究了热作模具钢DM的高温稳定性和热疲劳性能。结果表明,DM钢在620℃热稳保温过程中马氏体板条内的薄片状M3C型碳化物逐渐向条块状M7C3型碳化物转变,在板条的边界生成M7C3、M23C6型碳化物。DM钢的短循环周次热疲劳性能受控于位错重排和湮灭,长循环周次热疲劳性能受控于碳化物的粗化程度。DM钢中M3C、M7C3、M6C型碳化物的生成自由能分别为27765.5 J/mol、3841.5 J/mol、-7138.1 J/mol,表明在热稳保温与热疲劳试验过程中碳化物的演变机理一致,发生了M3C→M7C3→M6C类型演变。  相似文献   

9.
Phase evolution in P92 and E911 weld metals during ageing   总被引:2,自引:0,他引:2  
Phase evolution in the weld metals of P92 and E911 steels weld joints were studied during ageing at 625 °C for up to 9000 h. The phases: ferrite + M23C6 + MX + Laves found by means of analytical TEM in the annealed states agree with the results of the thermodynamic calculation of equilibrium phases. The cross-weld hardness values, HV10, after 1000, 3000, and 9000 h ageing overlap each other and are approximately 15 units below that of the post-weld heat-treated (PWHT) state. Charpy impact energy with the notch at the centerline of the weld metal was measured. Its values decrease after ageing from approximately 60–80 to 12 J compared to the PWHT state. In 9–12%Cr steel with W this phenomenon can be explained by a priori heterogeneity in the weld metal, its large former austenite grain size, the precipitation and growth of M23C6 and Laves phase particles on grain and packet boundaries.  相似文献   

10.
The effect of the tempering temperature on Z-phase formation and creep strength in 9Cr–1Mo–V–Nb–N steel was examined with particular attention to the precipitation sequence of MX, M2X, and Z-phase during creep exposure. Tempering at a lower temperature provided a high dislocation density and a fine lath structure. Tempering at 953, 1003, and 1038 K provided [M23C6, M2X, NbX], [M23C6, M2X, NbX, VX], and [M23C6, NbX, VX] phases, respectively. The creep strength of steel tempered at 953 K was the highest among the steels studied, even in the long term. No large decrease in creep strength was observed in steel tempered at 953 K. The Z-phase was observed after long-term creep in steel tempered at 1003 or 1038 K. In steel tempered at 953 K, a VX rather than a Z-phase formed during creep, and this was accompanied by consumption of M2X. Retardation of the Z-phase formation can retard the creep strength degradation in steel tempered at 953 K.  相似文献   

11.
The cooling rate and large undercooling significantly affect the fusion zone microstructure in pulsed GTAW weldment under the same heat input condition. The weld pool solidified at fast cooling rate about 139 °C/s superimposed a relative amount of undercooling has a desired higher γ content of about 37 vol.% without tradition nitrogen addition or post-weld heat treatment. The final structure of the pulsed weld metal at 7 °C plate consists of a great amount of desirable intra-granular austenite γ2 (IGA) inside the grain matrix, besides Widmannstätten austenite γ2 (W) and grain boundary austenite γ2 (GBA). It results in the weldment with an uniform microhardness distribution and a homogeneous mechanical property.  相似文献   

12.
The microstructure and piezoelectric properties of the 0.01Pb(Mg1/2W1/2)O3–0.41Pb(Ni1/3Nb2/3)O3–0.35PbTiO3–0.23PbZrO3 + 0.1 and 0.3 wt.% Y2O3 + x ZnO ceramics were investigated. The crystal structure changed from psudocubic to tetragonal when ZnO added. The average grain size increased from 4 μm to 8 μm with the addition of ZnO by oxygen diffusion, even if the growth rate was low. When ZnO added until 0.5 wt.%, the , kp and d33 values of specimens were slightly increased regardless Y2O3 contents. The curie point of PMW–PNN–PT–PZ ceramics were increased from 162 °C to 232 °C, as increasing the ZnO contents. When ZnO added, the kp of specimens slightly was increased regardless Y2O3 contents. The mechanical quality factors were abruptly decreased regardless Y2O3 contents, when ZnO added until 0.75 wt.%. The optimized piezoelectric properties were obtained; d33 = 730 (pC/N), kp = 60, Qm = 50, and  = 4750, when PMW–PNN–PT–PZ + 0.3 wt.% Y2O3 + 0.5 wt.% ZnO sintered at 1200 °C for 1 h.  相似文献   

13.
Chemical preparation, crystal structure, IR absorption and thermal analysis of a new cyclotetraphosphate [2-NH2-5-CH3C5H4N]4P4O12·6H2O are reported. This compound is triclinic P-1 with unit-cell parameters: a = 10.206(5), b = 11.778(1), c = 9.991(4) Å,  = 110.40(6), β = 117.74(6), γ = 86.41(3)°, V = 989.1(8) Å3, Z = 1, Dx = 1.445 g cm−3. The structure has been determined and refined to R = 0.034 and Rw = 0.044, using 3663 independent reflections. The ring anions and water molecules form layers spreading around (a, b + c) planes via OHO hydrogen bonds. Between them are anchored 2-amino-5-methylpyridium cations, which establish H-bonds to interconnect the different adjacent layers and so contribute to the cohesion of the three-dimensional network. Tautomerization of (C6H9N2)+ groups was evidenced in the present structure.  相似文献   

14.
Using self‐made electromagnetic centrifugal casting machine, optical microscopy (OM) and D/max2200pc X‐ray diffraction, the solidification microstructure and phases of as‐cast high speed steel(HSS) roll made by sand casting, centrifugal casting and electromagnetic centrifugal casting were investigated. The experiment results show that the phases of as‐cast high speed steel (HSS) roll are alloy carbide (such as W2C, VC, Cr7C3), martensite and austenite. The centrifugal casting and electromagnetic centrifugal casting can apparently improve the solidification structure of HSS roll. With the increase of electromagnetic field intensity (B), the volume fraction of austenite in the HSS solidification structure increased obviously and eutectic ledeburite decreased, the secondary carbide precipitated from the austenite is more fine and distribution of secondary carbide is more even.  相似文献   

15.
Transmission electron microscopy has been used to study the microstructure of an experimental white cast iron, in which a combination of modified alloy composition and unconventional heat treatment has resulted in a fracture toughness of 40 MPa m-1/2. Microstructural features of the alloy that contribute to the toughness improvement and hence distinguish it from conventional white irons have been investigated. In the as-cast condition the dendrites are fully austenitic and the eutectic consists of M7C3 carbides and martensite. During heat treatment at 1130 °C the austenite is partially destabilized by precipitation of chromium-rich M7C3 carbides. This results in a dendritic microconstituent consisting of bulk retained austenite and secondary carbides which are sheathed with martensite. The martensite sheaths, which contain interlath films of retained austenite, are irregular in shape with some laths extending into the bulk retained austenite. Emphasis has been placed on the morphology, distribution, and stability of the retained austenite and its transformation products in the dendrites. The implications of these findings on the transformation toughening mechanism in this alloy are discussed.  相似文献   

16.
The microstructures, hardness and corrosion behavior of high chromium cast irons with 20, 27 and 36 wt.%Cr have been compared. The matrix in as-cast 20 wt.%Cr, 27 wt.%Cr and 36 wt.%Cr high chromium cast irons is pearlite, austenite and ferrite, respectively. The eutectic carbide in all cases is M7C3 with stoichiometry as (Cr3.37, Fe3.63)C3, (Cr4.75, Fe2.25)C3 and (Cr5.55, Fe1.45)C3, respectively. After destabilization at 1000 °C for 4 h followed by forced air cooling, the microstructure of heat-treatable 20 wt.%Cr and 27 wt.%Cr high chromium cast irons consisted of precipitated secondary carbides within a martensite matrix, with the eutectic carbides remaining unchanged. The type of the secondary carbide is M7C3 in 20 wt.%Cr iron, whereas both M23C6 and M7C3 secondary carbides are present in the 27 wt.%Cr high chromium cast iron. The size and volume fraction of the secondary carbides in 20 wt.%Cr high chromium cast iron were higher than for 27 wt.%Cr high chromium cast iron. The hardness of heat-treated 20 wt.%Cr high chromium cast iron was higher than that of heat-treated 27 wt.%Cr high chromium cast iron. Anodic polarisation tests showed that a passive film can form faster in the 27 wt.%Cr high chromium cast iron than in the 20 wt.%Cr high chromium cast iron, and the ferritic matrix in 36 wt.%Cr high chromium cast iron was the most corrosion resistant in that it exhibited a wider passive range and lower current density than the pearlitic or austenitic/martensitic matrices in 20 wt.%Cr and 27 wt.%Cr high chromium cast irons. For both the 20 wt.%Cr and the 27 wt.%Cr high chromium cast irons, destabilization heat treatment gave a slight improvement in corrosion resistance.  相似文献   

17.
The preparation, crystal structure, TG–DTA analysis and spectroscopy investigation are reported for the 2,5-dimethoxy phenyl ammonium cyclotetraphosphate dihydrate [2,5-(CH3O)2C6H3NH3]4P4O12·2H2O. This new compound is triclinic P with unit cell dimensions: a = 7.438(5) Å, b = 11.841(7) Å, c = 12.354(4) Å,  = 96.61(4)°, β = 98.35(4)°, γ = 102.60(6)°, Z = 1 and V = 1038.0(1) Å3. Its crystal structure has been determined and refined to R = 0.049, with 5128 independant reflections. The structure can be described by rows of P4O12 ring anions along the a axis; between these rows are located the organic groups, connected to them by hydrogen bonds.  相似文献   

18.
Optical and electron microscopy have been used to study the complex microstructures developed during the isothermal decomposition of austenite above 550°C in Fe-4Mo-0.2C and Fe-10Cr-0.4C alloy steels. As the transformation temperature is decreased, the decomposition products change from the disordered growth of nodular alloy pearlites to blocky ferrite structures containing fine dispersions of alloy carbide, and finally to acicular ferrite structures also containing alloy carbide. The branched M6C and M23C6 of the high-temperature pearlite is replaced by Mo2C and M7C3 with a fibrous or lath morphology in the lower temperature structures. The decomposition microstructures are explained in terms of a model which takes account of the growth of particular alloy carbides at the interfaces of ferrite allotriomorphs, where the growth mechanism, and hence the morphology, is sensitive to transformation temperature.  相似文献   

19.
Single crystals of gadolinium–sodium polyphosphate NaGd(PO3)4 were grown for the first time using a flux method and characterized by X-ray diffraction. This phosphate crystallizes in a monoclinic system with P21/n space group and with the following unit-cell dimensions: a = 9.767(3) Å, b = 13.017(1) Å, c = 7.160(2) Å, β = 90.564(5)°, V = 910.3(4) Å3 and Z = 4. The crystal structure was solved from 3451 X-ray independent reflections with final R(F2) = 0.0219 and Rw(F2) = 0.056 refined with 164 parameters (). The atomic arrangement can be described as a long chain polyphosphate organization. Two infinite (PO3)∝ chains with a period of eight tetrahedra run along the [0 1 1] direction. The structure of NaGd(PO3)4 consists of GdO8 polyhedra sharing oxygen atoms with phosphoric group PO4. Each Na+ ion is bonded to eight oxygen atoms.  相似文献   

20.
通过观察分析钨铬铸铁中碳化物的三维形貌,研究了M_3C、M_7C_3、M_6C三种碳化物的结晶特征。初生M_3C以平板状生长;亚共品、过共晶铸铁中共晶M_3C分别以初生奥氏体、初生M_3C为衬底与奥氏体构成离异共晶和莱氏体。初生M_7C_3呈六角形棒状体以螺旋方式轴向生长的同时向心生长;共晶M_7C_3与奥氏体协同生长。初生M_6C为八面体尖端相连的枝晶形态呈“锚状”生长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号