首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Angiotensin II (AngII) induces cardiac hypertrophy through activating a variety of protein kinases. In this study, to understand how cardiac hypertrophy develops, we examined AngII-evoked signal transduction pathways leading to the activation of extracellular signal-regulated protein kinases (ERKs), which are reportedly critical for the development of cardiac hypertrophy, in cultured cardiac myocytes isolated from neonatal rats. Inhibition of protein kinase C (PKC) with calphostin C or down-regulation of PKC by pretreatment with a phorbol ester for 24 h abolished AngII-induced activation of Raf-1 and ERKs, and addition of a phorbol ester conversely induced a marked increase in the activities of Raf-1 and ERKs. Pretreatment with two chemically and mechanistically dissimilar tyrosine kinase inhibitors, genistein and tyrphostin, did not attenuate AngII-induced activation of ERKs. In contrast, genistein strongly blocked insulin-induced ERK activation in cardiac myocytes. Although pretreatment with manumycin, a Ras farnesyltransferase inhibitor, or overexpression of a dominant-negative mutant of Ras inhibited insulin-induced ERK activation, neither affected AngII-induced activation of ERKs. Overexpression of a dominant-negative mutant of Raf-1 completely suppressed ERK2 activation by AngII, endothelin-1, and insulin. These results suggest that PKC and Raf-1, but not tyrosine kinases or Ras, are critical for AngII-induced activation of ERKs in cardiac myocytes.  相似文献   

2.
Growth factors activate mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinases (ERKs) and Jun kinases (JNKs). Although the signaling cascade from growth factor receptors to ERKs is relatively well understood, the pathway leading to JNK activation is more obscure. Activation of JNK by epidermal growth factor (EGF) or nerve growth factor (NGF) was dependent on H-Ras activation, whereas JNK activation by tumor necrosis factor alpha (TNF-alpha) was Ras-independent. Ras activates two protein kinases, Raf-1 and MEK (MAPK, or ERK, kinase) kinase (MEKK). Raf-1 contributes directly to ERK activation but not to JNK activation, whereas MEKK participated in JNK activation but caused ERK activation only after overexpression. These results demonstrate the existence of two distinct Ras-dependent MAPK cascades--one initiated by Raf-1 leading to ERK activation, and the other initiated by MEKK leading to JNK activation.  相似文献   

3.
MEK1 and MEK2 contain a proline-rich insert not present in any other known MEK (MAP (mitogen-activated protein)/ERK (extracellular signal-regulated kinase) kinase) family members. We examined the effect of removing the MEK1 polyproline insert on MEK activity, its binding to Raf, and its ability to activate ERKs in cells. Deletion of the insert had no effect on either the activity of MEK1 or on its ability to bind to Raf-1. Both wild type and constitutively active MEK1 coimmunoprecipitated with Raf-1 whether or not the insert was present. Deletion of the insert did not reduce activation of MEK1 by EGF or activated Raf in cells. The proline-rich insert enhanced the ability of an otherwise equally active MEK1 protein to regulate endogenous ERKs in mammalian cells. Overexpression of either constitutively active MEK1 lacking the insert or ERK2 compensates for the weaker in vivo activity of the MEK1 deletion mutant. Expression of the insert in cells reduced activation of ERKs by EGF. We conclude that the proline-rich insert is not the site of the MEK-Raf interaction and that the polyproline insert is required for its efficient activation of downstream ERKs in cells.  相似文献   

4.
Raf-1 is a serine/threonine kinase which is essential in cell growth and differentiation. Tyrosine kinase oncogenes and receptors and p21ras can activate Raf-1, and recent studies have suggested that Raf-1 functions upstream of MEK (MAP/ERK kinase), which phosphorylates and activates ERK. To determine whether or not Raf-1 directly activates MEK, we developed an in vitro assay with purified recombinant proteins. Epitope-tagged versions of Raf-1 and MEK and kinase-inactive mutants of each protein were expressed in Sf9 cells, and ERK1 was purified as a glutathione S-transferase fusion protein from bacteria. Raf-1 purified from Sf9 cells which had been coinfected with v-src or v-ras was able to phosphorylate kinase-active and kinase-inactive MEK. A kinase-inactive version of Raf-1 purified from cells that had been coinfected with v-src or v-ras was not able to phosphorylate MEK. Raf-1 phosphorylation of MEK activated it, as judged by its ability to stimulate the phosphorylation of myelin basic protein by glutathione S-transferase-ERK1. We conclude that MEK is a direct substrate of Raf-1 and that the activation of MEK by Raf-1 is due to phosphorylation by Raf-1, which is sufficient for MEK activation. We also tested the ability of protein kinase C to activate Raf-1 and found that, although protein kinase C phosphorylation of Raf-1 was able to stimulate its autokinase activity, it did not stimulate its ability to phosphorylate MEK.  相似文献   

5.
Raf-1 is a Ser/Thr protein kinase that is involved in regulation of proliferation, differentiation, and apoptosis. Recently, we and others showed that Raf-1 is not only activated in mitogenic pathways leading to cell cycle entry but also during mitosis. Transient expression studies in COS cells now demonstrate that, in contrast to growth factor-dependent activation of Raf-1, mitotic activation of Raf-1 is Ras-independent. Dominant negative RasS17N does not interfere with mitotic activation of Raf-1, whereas epidermal growth factor-dependent stimulation of Raf-1 is inhibited. In addition, the Raf-1 mutant RafR89L, which cannot bind to activated Ras, is still stimulated in mitotic cells. Mitotic activation of Raf-1 seems to be partially dependent on tyrosine phosphorylation since the kinase activity of the Raf mutant RafYY340/341FF, which can no longer be activated by Src, is reduced in mitotic cells. Surprisingly, cell fractionation experiments showed that mitotic-activated Raf-1 is predominantly located in the cytoplasm in contrast to the mitogen-activated Raf-1 that is bound to the plasma membrane. In addition, mitotic activation of Raf-1 does not lead to stimulation of the mitogen-activated protein kinase kinase (MAPKK or MEK) and the extracellular signal-regulated protein kinase (ERK). These data demonstrate that in mitotic cells a Ras-independent mechanism results in a cytoplasmic active Raf-1 kinase which does not signal via the MEK/ERK pathway. These data demonstrate that in mitotic cells a Ras-independent mechanism results in a cytoplasmic active Raf-1 kinase which does not signal via the MEK/ERK pathway.  相似文献   

6.
An increasing body of evidence suggests that mitogen-induced activation of the RAF/ERK signaling pathway is functionally separate from the stress-induced activation of the SEK/JNK/p38 signaling pathway. In general, stress stimuli strongly activate the p38s and the JNKs while only weakly activating ERK1 and ERK2. However, a number of independent groups have now shown that the RAF/ERK signaling pathway is strongly activated by ionizing radiation. In this work, we examine this paradox. We show that both mitogen-activated protein (MAP) kinase kinase 1 (MEK1) and MAP kinase kinase 2 (MEK2) are activated by ionizing radiation. Blockage of this activation through the use of dominant negative MEK2 increases sensitivity of the cell to ionizing radiation and decreases the ability of a cell to recover from the G2/M cell cycle checkpoint arrest. Blocking MEK2 activation does not affect double-strand DNA break repair, however. Although MEK1 is activated to a lesser extent by ionizing radiation, expression of a dominant negative MEK1 does not affect radiation sensitivity of the cell, the G2/M checkpoint of the cell, or double-strand break repair. Because ionizing radiation leads to a different cell cycle arrest (G2/M arrest) than that typically seen with other stress stimuli, and because we have shown that MEK2 can affect G2/M checkpoint kinetics, these results provide an explanation for the observation that the MEKs can be strongly activated by ionizing radiation and only weakly activated by other stressful stimuli.  相似文献   

7.
Phorbol ester-sensitive EL4 murine thymoma cells respond to phorbol 12-myristate 13-acetate with activation of ERK mitogen-activated protein kinases, synthesis of interleukin-2, and death, whereas phorbol ester-resistant variants of this cell line do not exhibit these responses. Additional aspects of the resistant phenotype were examined, using a newly-established resistant cell line. Phorbol ester induced morphological changes, ERK activation, calcium-dependent activation of the c-Jun N-terminal kinase (JNK), interleukin-2 synthesis, and growth inhibition in sensitive but not resistant cells. A series of protein kinase C activators caused membrane translocation of protein kinase C's (PKCs) alpha, eta, and theta in both cell lines. While PKC eta was expressed at higher levels in sensitive than in resistant cells, overexpression of PKC eta did not restore phorbol ester-induced ERK activation to resistant cells. In sensitive cells, PKC activators had similar effects on cell viability and ERK activation, but differed in their abilities to induce JNK activation and interleukin-2 synthesis. PD 098059, an inhibitor of the mitogen activated protein (MAP)/ERK kinase kinase MEK, partially inhibited ERK activation and completely blocked phorbol ester-induced cell death in sensitive cells. Thus MEK and/or ERK activation, but not JNK activation or interleukin-2 synthesis, appears to be required for phorbol ester-induced toxicity. Alterations in phorbol ester response pathways, rather than altered expression of PKC isoforms, appear to confer phorbol ester resistance to EL4 cells.  相似文献   

8.
We have demonstrated that extracellular signal-regulated kinases (ERKs) and cyclin D1 are required for bovine tracheal myocyte DNA synthesis. We hypothesized that catalytic activation by ERKs may regulate cyclin D1 expression in these cells. To test this hypothesis, we examined the effects of two inhibitors of ERKs and two reagents that increase the level of activated ERKs on cyclin D1 protein abundance and promoter activity. ERK activity was inhibited either by PD98059, a synthetic inhibitor of mitogen-activated protein kinase (MAPK)/ERK kinase (MEK), the upstream signaling intermediate required and sufficient for ERK activation, or by transient transfection with a dominant-negative mutant of MEK1 (MEK-2A). The level of activated ERKs was increased by transient transfection with either a constitutively active form of MEK1 (MEK-2E) or wild-type ERK2 (MAPKwt). Cyclin D1 expression was assessed either by immunoblot or cotransfection with the full-length cyclin D1 promoter subcloned into a luciferase reporter. We found that pretreatment of bovine tracheal myocytes with PD98059 significantly attenuated platelet- derived growth factor (PDGF)-induced cyclin D1 protein abundance. Furthermore, transfection with MEK-2A reduced PDGF-induced cyclin D1 promoter activity. Finally, transfection with either MEK-2E or MAPKwt induced cyclin D1 promoter activity in the absence of growth factor treatment. We conclude that catalytic activation of ERKs regulates cyclin D1 expression in airway smooth-muscle cells.  相似文献   

9.
10.
One of the major signaling pathways by which extracellular signals induce cell proliferation and differentiation involves the activation of extracellular signal-regulated kinases (ERKs). Because calmodulin is essential for quiescent cells to enter cell cycle, the role of calmodulin on ERK2 activation was studied in cultured fibroblasts. Serum, phorbol esters, or active Ras induced ERK2 activation in NIH 3T3 fibroblasts. This activation was not inhibited by calmodulin blockade. Surprisingly, inhibition of calmodulin prior to fetal bovine serum addition prolonged activation of ERK2. Furthermore, inactivation of calmodulin in serum-starved cells induced ERK2 phosphorylation that was dependent on MAP kinase kinase (MEK). Inactivation of calmodulin in serum-starved cells also induced activation of Ras, Raf, and MEK. On the contrary, tyrosine phosphorylation of tyrosine kinase receptors was not observed. These results indicate that calmodulin inhibits ERK2 activation pathway at the level of Ras. Calmodulin inhibition induced overexpression of p21(cip1) which was dependent on MEK activity. We propose that inhibition of Ras by calmodulin prevents the activation of ERK2 at low serum concentration. Thus, entering into the cell cycle after serum addition would imply the overcoming of the inhibitory effect of calmodulin and consequently ERK2 activation. Furthermore, down-regulation of Ras by calmodulin may be also important to determine the duration of ERK2 activation and to prevent a high p21(cip1) expression that would lead to an inhibition of cell proliferation.  相似文献   

11.
Exposure of neutrophils to inflammatory stimuli such as the chemoattractant FMLP leads to activation of responses including cell motility, the oxidative burst, and secretion of proteolytic enzymes. A signaling cascade involving sequential activation of Raf-1, mitogen-activated protein kinase (MEK), and extracellular signal regulated kinase (ERK) is also rapidly activated after agonist exposure. The temporal relationship between these events suggests that the kinases may be involved in triggering the effector functions, but direct evidence of a causal relationship is lacking. To assess the role of the MEK/ERK pathway in the activation of neutrophil responses, we studied the effects of PD098059, a potent and selective inhibitor of MEK. Preincubation of human neutrophils with 50 microM PD098059 almost completely (>90%) inhibited the FMLP-induced activation of MEK-1 and MEK-2, the isoforms expressed by neutrophils. This dose of PD098059 virtually abrogated chemoattractant-induced tyrosine phosphorylation and activation of ERK-1 and ERK-2, implying that MEKs are the predominant upstream activators of these mitogen-activated protein kinases. Pretreatment of neutrophils with the MEK antagonist inhibited the oxidative burst substantially and phagocytosis only moderately. In addition, PD098059 antagonized the delay of apoptosis induced by exposure to granulocyte-macrophage CSF. However, the effects of PD098059 were selective, as it failed to inhibit other responses, including chemoattractant-induced exocytosis of primary and secondary granules, polymerization of F-actin, chemotaxis, or activation of phospholipase A2. We conclude that MEK and ERK contribute to the activation of the oxidative burst and phagocytosis, and participate in cytokine regulation of apoptosis.  相似文献   

12.
Members of the raf oncogene family encode serine/threonine protein kinases, which activate the mitogen-activated protein kinase kinase MEKs (MAPK or ERK kinases) through direct interaction and phosphorylation. Several recent studies have revealed interesting differences between two members of this family, Raf-1 and B-Raf, regarding their activation, regulation, and kinase activity. In particular, B-Raf was shown to display higher MEK kinase activity than Raf-1. By using both two-hybrid analysis and coimmunoprecipitation experiments, we demonstrate here that B-Raf also markedly differs from Raf-1 by a higher affinity for MEK. We previously reported that the B-raf gene encodes multiple protein isoforms resulting from complex alternative splicing of two exons (exons 8b and 10) located upstream of B-Raf kinase domain. In the present study, we show that these naturally occurring modifications within the protein sequence markedly modulate both the biochemical and oncogenic properties of B-Raf. The presence of exon 10 sequences enhances the affinity for MEK, the basal kinase activity, as well as the mitogenic and transforming properties of full-length B-Raf, whereas the presence of exon 8b sequences seems to have opposite effects. Therefore, alternative splicing represents a novel regulatory mechanism for a protein of the Raf family.  相似文献   

13.
We studied the role of Ca++ and protein kinase C (PKC) in alpha-1A adrenergic receptor (AR)-mediated activation of mitogen-activated protein kinase pathways in PC12 cells. In PC12 cells stably transfected with the human alpha-1A AR, norepinephrine (NE) strongly activated both extracellular signal regulated kinases (ERKs) and c-jun-NH2-terminal kinases (JNK). Ten nanomolar thapsigargin (TG) increased cytoplasmic Ca++ at least as much as NE but did not activate ERKs or JNK. Higher concentrations of TG caused a small activation of ERKs but not JNK. Emptying [Ca++]i stores by pretreatment with TG prevented the NE-stimulated increase in [Ca++]i but not ERK or JNK activation. The Ca++ chelator bis(2-aminophenoxy)ethane-N-N-N'-N'-tetraacetate (BAPTA) dose dependently abolished NE-stimulated Ca++ responses but not ERK or JNK activation. NE increased tyrosine phosphorylation of Pyk2, and this response was neither blocked by BAPTA nor mimicked by TG. The phorbol ester tumor promoting agent (TPA) caused a dose-dependent activation of ERKs that was potentiated by 10 nM TG. TPA caused only a small activation of JNK relative to that caused by NE, which was not affected by TG. The potent PKC inhibitor bisindolylmaleimide I dose dependently inhibited ERK and JNK activation by TPA, but not NE. ATP and UTP activated similar mitogen-activated protein kinase responses through endogenous P2Y2 receptors, and these responses were not blocked by BAPTA or bisindolylmaleimide I, suggesting that these results may be generalizable to other Gq/11-coupled receptors. The results suggest that Ca++ release and PKC activation are neither necessary nor sufficient for alpha-1A AR-mediated activation of mitogenic responses in PC12 cells.  相似文献   

14.
Mitogen-activated protein (MAP) kinases mediate responses to a wide array of cellular stimuli. These cascades consist of a MAP kinase or extracellular signal-regulated kinase (ERK), activated by a MAP/ERK kinase (MEK), in turn activated by a MEK kinase (MEKK). MEKK1 has been shown to be a strong activator of the c-Jun N-terminal kinase/stress-actived protein kinase (JNK/SAPK) pathway. We report here that JNK/SAPK binds directly to the N-terminal, noncatalytic domain of MEKK1 in vitro and in transfected cells. Immobilized MEKK1-derived peptides extract JNK/SAPK selectively from cell lysates. MEKK1 coimmunoprecipitates with multiple JNK/SAPK isoforms in transfected cells. Expression of the N terminus of MEKK1 lacking the kinase domain increases activation of endogenous JNK/SAPK by MEKK1. The data are consistent with a model in which MEKK1-JNK/SAPK binding facilitates the receipt of signals from upstream inputs and localizes JNK/SAPK to intracellular targets of the pathway.  相似文献   

15.
We evaluated the role of protein kinase C (PKC) in the regulation of apoptosis triggered by singlet oxygen. Activation of PKC by short-term 12-O-tetradecanoyl phorbol 13-acetate (TPA) treatment inhibited apoptosis, whereas inhibition of PKC with several inhibitors potentiated this process. The antiapoptotic effect of TPA was accompanied by phosphorylation of extracelluar signal-regulated kinase 1/2 (ERK1/2). Pretreatment of cells with MEK inhibitor, PD98059, inhibited TPA-induced phosphorylation of ERK1/2 and the cytoprotective ability of TPA. These results suggest that activation of PKC in HL-60 cells confers protection against apoptosis induced by singlet oxygen and that ERK1/2 mediates antiapoptotic signaling of PKC.  相似文献   

16.
Growth factor stimulated receptor tyrosine kinases activate a protein kinase cascade via the serine/threonine protein kinase Raf-1. Direct upstream activators of Raf-1 are Ras and Src. This study shows that MEK1, the direct downstream effector of Raf-1, can also stimulate Raf-1 kinase activity by a positive feedback loop. Activated MEK1 mediates hyperphosphorylation of the amino terminal regulatory as well as of the carboxy terminal catalytic domain of Raf-1. The hyperphosphorylation of Raf-1 correlates with a change in the tryptic phosphopeptide pattern only at the carboxy terminus of Raf-1 and an increase in Raf-1 kinase activity. MEK1-mediated Raf-1 activation is inhibited by co-expression of the MAPK specific phosphatase MKP-1 indicating that the MEK1 effect is exerted through a MAPK dependent pathway. Stimulation of Raf-1 activity by MEK1 is independent of Ras, Src and tyrosine phosphorylation of Raf-1. MEK1 can however synergize with Ras and leads to further increase of the Raf-1 kinase activity. Thus, MEK1 can mediate activation of Raf-1 by a novel positive feedback mechanism which allows fast signal amplification and could prolong activation of Raf-1.  相似文献   

17.
Activation of extracellular signal-regulated protein kinase (ERK) is considered essential for mitogenesis. In the present study, rat liver epithelial WB cells were used to investigate the relative roles of Ca2+, protein kinase C (PKC), and protein tyrosine phosphorylation in mitogenesis and activation of the ERK pathway stimulated by epidermal growth factor (EGF) and angiotensin II (Ang II). The sensitivity of the ERK pathway to Ca2+ was studied by using 1,2-bis (O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) to chelate intracellular Ca2+ and a low extracellular Ca2+ concentration to prevent Ca2+ influx. Agonist-induced PKC activation was diminished by inhibition of PKC by GF-109203X (bisindolylmaleimide) or by down-regulation of PKC by long-term treatment of the cells with phorbol myristate acetate (PMA). Our results show that although activation of PKC was critical for mitogenesis induced by Ang II or EGF, the initial activation of ERK by both agonists in these cells was essentially independent of PKC activation and was insensitive to Ca2+ mobilization. This is in contrast to the findings in some cell types that exhibit a marked dependency on mobilization of Ca2+ and/or PKC activation. On the other hand, an obligatory tyrosine phosphorylation step for activation of ERK was indicated by the use of protein tyrosine kinase inhibitors, which profoundly inhibited the activation of ERK by EGF, Ang II, and PMA. Additional experiments indicated that tyrosine phosphorylation by a cytosolic tyrosine kinase may represent a general mechanism for G-protein coupled receptor mediated ERK activation.  相似文献   

18.
Sublytic complement attack through C5b-9 assembly induces oligodendrocytes (OLG) to express proto-oncogenes and to enter the cell cycle from resting G0/G1 phase to S phase. We have investigated whether cell cycle induction by C5b-9 is mediated by mitogen activated protein kinase (MAPK) pathway in OLG. C5b-9 but not C5b6 induced activation of both ERK1 and c-jun NH2 terminal kinases 1 (JNK1) in OLG. The increased ERK1 and JNK1 activities are transient, reaching a maximum around 20 min following exposure to C5b-9. Activation of Raf-1 and MEK1, upstream kinases of ERK1, was shown by increased Raf-1 kinase activity in anti-Raf-1 immunoprecipitates of OLG treated with C5b-9 and ERK1 activity that can be inhibited by PD098,059, a specific MEK1 inhibitor. Requirement for the ERK1 pathway in DNA synthesis was then evaluated using PD098,059. Enhanced DNA synthesis induced by serum complement was completely abolished when OLG were pretreated with PD098,059. On the other hand, c-fos mRNA expression induced by complement was inhibited only 50% by PD098,059, while the c-jun mRNA level was not affected by this MEK1 inhibitor. Interestingly, p70 S6 kinase, an important ribosomal kinase in mitogenesis, was also activated by C5b-9. These findings indicated that the MAPK pathways appears to play a major role in inducing OLG to enter the S phase of the cell cycle from the resting G1/G0 phase.  相似文献   

19.
We have demonstrated previously that microtubule depolymerization by colchicine in human monocytes induces selective production of interleukin-1 (IL-1) (Manié, S., Schmid-Alliana, A., Kubar, J., Ferrua, B., and Rossi, B. (1993) J. Biol. Chem. 268, 13675-13681). Here, we provide evidence that disruption of the microtubule structure rapidly triggers extracellular signal-regulated kinase (ERK) activation, whereas it was without effect on SAPK2 activity, which is commonly acknowledged to control pro-inflammatory cytokine production. This process involves the activation of the entire cascade including Ras, Raf-1, MEK1/2, ERK1, and ERK2. Activation of ERKs is followed by their nuclear translocation. Although other SAPK congeners might be activated upon microtubule depolymerization, the activation of ERK1 and ERK2 is mandatory for IL-1 production as shown by the blocking effect of PD 98059, a specific MEK1/2 inhibitor. Additionally, we provide evidence that microtubule disruption also induces the activation of c-Src and Hck activities. The importance of Src kinases in the mediation of the colchicine effect is underscored by the fact that CP 118556, a specific inhibitor of Src-like kinase, abrogates both the colchicine-induced ERK activation and IL-1 production. This is the first evidence that ERK activation is an absolute prerequisite for induction of this cytokine. Altogether, our data lend support to a model where the status of microtubule integrity controls the level of Src activities that subsequently activate the ERK kinase cascade, thus leading to IL-1 production.  相似文献   

20.
The signaling of ligands operating via heterotrimeric G proteins is mediated by a complex network that involves sequential phosphorylation events. Signaling by the G protein-coupled receptor GnRH was shown to include elevation of Ca2+ and activation of phospholipases, protein kinase C (PKC) and extra-cellular signal-regulated kinase (ERK). In this study, GnRH was shown to activate Jun N-Terminal Kinase (JNK)/SAPK in alpha T3-1 cells in a PKC- and tyrosine kinase-dependent manner. GnRH as well as tumor-promoting agent (TPA) also increased c-Src activity, which peaked at 2 min after GnRH stimulation and was sensitive both to PKC and to tyrosine kinase inhibitors. Coexpression of Csk, which serves as a Src-dominant interfering kinase, and constitutively active forms of Src, together with JNK, confirmed the involvement of c-Src downstream of PKC in the GnRH-JNK pathway. Coexpression of dominant negative and constitutively active forms of CDC42, Rac1, Ras, MEKK1, and MEK1 with JNK indicated that JNK activation by GnRH and TPA is mediated by CDC42 and MEKK1. Ras and MEK1, which are involved in a related mitogen-activated protein kinase (MAPK) pathway, did not affect JNK activation in alpha T3-1 cells. Taken together, our results suggest that GnRH stimulation of JNK activity is mediated by a unique pathway that includes sequential activation of PKC, c-Src, CDC42, and probably also MEKK1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号