首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tungsten-oxide thin films are promising materials for use in highly effective gas-sensing devices for NO2, ozone and H2S detection in ambient air. In this work tungsten-oxide thin films were obtained by electron-beam deposition and annealed in the temperature range 350–800 °C for 1–3 h. The structure, morphology and phase composition of the as-deposited and annealed films were characterized by X-ray diffraction, SEM and AFM. The changes of phase composition and the microstructure in dependence of the annealing conditions are described in detail. The direction of the phase transformations for different annealing conditions is influenced by the very high macrostresses that appear as an additional, independent thermodynamic factor. During annealing at 350–400 °C for 1–3 h and at 800 °C for 1 h predominantly semiconductor phases are formed, whereas the thin films annealed at 500–600 °C for 1–3 h and 800 °C for 2 h consist mainly of phases with more pronounced metallic properties. The processes of realignment of crystal structures during solid-phase transformation lead not only to the growth of new crystallites with a preferential orientation but also to a change in the direction of preferred growth with increasing annealing temperature and time. The films can be divided into two main groups: compact (as-deposited and annealed at 350–500 °C for 1–3 h) and porous (annealed at 600–800 °C for 1–3 h) layers. The gas-sensing properties of these films and the correlation between microstructure and sensing properties will be described in the second part of this paper.  相似文献   

2.
Magnetron sputtered amorphous carbon nitride films were annealed at different temperatures (450-900°C) and time (30-120 min). Compositional, bonding structural and surface morphological modifications of the films were characterized by Fourier transformation infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy. The as-deposited film was found to have nitrogen content of 30 at%, and the carbon atoms were bonded to nitrogen atoms in the chemical structure state of CN, CN and CN bonds. The FTIR and XPS results showed that the films were thermally stable without an obvious change in the films as annealing temperature was lower than 600°C. The relative intensity ratio of CN over CN bonds reached a maximum at annealing temperature of 750°C, and then decreased gradually at annealing temperature up to 900°C. The CN bonds in the films decreased with the increase of annealing temperature and eliminated completely at annealing temperature of 900°C. These results revealed that annealing caused a substantial decrease in the number of weak bonds between carbon and nitride atoms. The CN bonds have higher thermal stability than CN bonds and CN bonds in the films. Simultaneously annealing also led to the formation of a large fraction graphitic-like carbon in the films while nitrogen escaped from the film. Besides, the surface roughness of the films increased with annealing temperature. However, when annealing time was increased from 30 to 120 min at annealing temperature of 750°C, only a slight effect of the annealing time on composition, bonding structure and the surface roughness of the films was observed.  相似文献   

3.
Si1−xCx films with varying ratio of carbon to silicon (C/Si) were fabricated by magnetron co-sputtering from a combined C and Si target. The composition in films was changed by adjusting the ratio of sputtered target's area between C and Si. Analysis of X-ray photoelectron spectroscopy for as-deposited films shows that C/Si atomic ratios of our films have ranges of 0.33-1.02. Thermal annealing of as-deposited films was carried out at various temperatures from 800 to 1100 °C in a conventional furnace. Fourier transform infrared spectra show a shift of Si-C stretching peak towards higher wavenumbers from ∼ 737 cm− 1 to ∼ 800 cm− 1 with increasing annealing temperature. From the results of Raman spectroscopy, X-ray diffraction and transmission electron microscopy, it was found that the dominant type of nanocrystals changes from Si to SiC in the films annealed at 1100 °C when the C/Si atomic ratio increases from 0.33 to 1.02.  相似文献   

4.
A low cost chemical bath deposition (CBD) technique has been used for the preparation of Cu2–xSe thin films on glass substrates. Structural, electrical and optical properties of these films were investigated. X-ray diffraction (XRD) study of the Cu2–xSe films annealed at 523 K suggests a cubic structure with a lattice constant of 5.697 Å. Chemical composition was investigated by X-ray photoelectron spectroscopy (XPS). It reveals that absorbed oxygen in the film decreases remarkably on annealing above 423 K. The Cu/Se ratio was observed to be the same in as-deposited and annealed films. Both as-deposited and annealed films show very low resistivity in the range of (0.04–0.15) × 10–5 -m. Transmittance and Reflectance were found in the range of 5–50% and 2–20% respectively. Optical absorption of the films results from free carrier absorption in the near infrared region with absorption coefficient of 108 m–1. The band gap for direct transition, Eg.dir varies in the range of 2.0–2.3 eV and that for indirect transition Eg.indir is in the range of 1.25–1.5 eV.  相似文献   

5.
The effect of deposition and thermal annealing temperatures on the dry etch rate of a-C:H films was investigated to increase our fundamental understanding of the relationship between thermal annealing and dry etch rate and to obtain a low dry etch rate hard mask. The hydrocarbon contents and hydrogen concentration were decreased with increasing deposition and annealing temperatures. The I(D)/I(G) intensity ratio and extinction coefficient of the a-C:H films were increased with increasing deposition and annealing temperatures because of the increase of sp2 bonds in the a-C:H films. There was no relationship between the density of the unpaired electrons and the deposition temperature, or between the density of the unpaired electrons and the annealing temperature. However, the thermally annealed a-C:H films had fewer unpaired electrons compared with the as-deposited ones. Transmission electron microscopy analysis showed the absence of any crystallographic change after thermal annealing. The density of the as-deposited films was increased with increasing deposition temperature. The density of the 600 °C annealed a-C:H films deposited under 450 °C was decreased but at 550 °C was increased, and the density of all 800 °C annealed films was increased. The dry etch rate of the as-deposited a-C:H films was negatively correlated with the deposition temperature. The dry etch rate of the 600 °C annealed a-C:H films deposited at 350 °C and 450 °C was faster than that of the as-deposited film and that of the 800 °C annealed a-C:H films deposited at 350 °C and 450 °C was 17% faster than that of the as-deposited film. However, the dry etch rate of the 550 °C deposited a-C:H film was decreased after annealing at 600 °C and 800 °C. The dry etch rate of the as-deposited films was decreased with increasing density but that of the annealed a-C:H films was not. These results indicated that the dry etch rate of a-C:H films for dry etch hard masks can be further decreased by thermal annealing of the high density, as-deposited a-C:H films. Furthermore, not only the density itself but also the variation of density with thermal annealing need to be elucidated in order to understand the dry etch properties of annealed a-C:H films.  相似文献   

6.
Tantalum oxide films have been deposited by 355 nm pulsed laser ablation of metallic Ta target in O3/O2 ambient. The structure and the composition of as-deposited and annealed films were examined by X-ray diffraction and Fourier transform infrared spectroscopy. The measurements of the current–voltage and capacitance–voltage characteristics of the Al/Ta2O5/Si capacitors were performed to reveal the electrical properties of the Ta2O5 films. The effects of annealing temperature on the characteristics of thin films have been studied. The results suggest that the films annealed above 700°C have the structure of orthorhombic β-Ta2O5, thc annealing treatment at high temperature decreases the bulk trap charge, the border trap, and the interface trap densities of as-deposited films, and improves significantly the dielectric and electrical properties of Ta2O5 film.  相似文献   

7.
Au/SiOx nanocomposite films have been fabricated by co-sputtering Au wires and SiO2 target using an RF magnetron co-sputtering system before the thermal annealing process at different temperatures. The structural and optical properties of the samples were characterized using X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), optical transmission, and reflection spectroscopy. XPS analysis confirms that the as-prepared SiOx films are silicon-rich suboxide films. FESEM images reveal that with an increase in annealing temperature, the embedded Au NPs tend to diffuse toward the surface of the SiOx films. In IR spectra, the intensity of the Si-O-Si absorption band increases with the annealing temperature. Optical spectra reveal that the position and intensity of the surface plasmon resonance (SPR) peak are dominated by the effect of the inter-particle distance and size of the Au NPs embedded in the SiOx films, respectively. The SPR absorption peak shows the blue-shift from 672 to 600 nm with an increase in annealing temperature. The growth of silica nanowires (SiOx NWs) is observed in the film prepared on a c-Si substrate instead of a quartz substrate and annealed at temperatures of 1000 °C.  相似文献   

8.
Thin films of aluminum oxide were deposited using trimethylaluminum and oxygen. The deposition rate was found to decrease with increasing temperature. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to investigate the film/substrate interface. When dry O2 was used during deposition, the film/substrate interface was free of any silicon dioxide or aluminum silicate phase. On annealing the as-deposited films in Ar, a layer of silicon dioxide film formed at the interface. XPS results indicated that the O/Al ratio in the as-deposited films was higher than that in stoichiometric Al2O3. However, the ratio was found to decrease in the annealed samples suggesting that excess oxygen present in the deposited films is responsible for the formation of interfacial silicon dioxide layer. Interfacial phase formation was observed in the as-deposited samples, when small amounts of ozone along with oxygen were used as the oxygen precursor.  相似文献   

9.
Cu–Al–O thin films are deposited on (0001) sapphire substrates by radio-frequency sputtering using an Al–Cu mosaic target. The Cu/Al atomic ratio of as-deposited Cu–Al–O films is measured to be 1.1. After deposition, the Cu–Al–O films are annealed at 600, 800, and 1000 °C, respectively, for 1 h in a N2 atmosphere. The film crystal structure, electronic structure, valence band, and electrical properties are studied. The as-deposited films are amorphous and films annealed at 600 °C contain the crystallized CuO phase; the structure becomes crystallized CuAlO2 after annealing at 800 °C and 1000 °C. The 800 °C annealed film grows along the (00l) plane. The crystallization decreases with the growth of the (012) and (018) planes for films annealed at 1000 °C. The resistivity values of the 800 °C and 1000 °C annealed films were measured as 1.07 Ω-cm and 864.01 Ω-cm, respectively. The lower resistivity of the 800 °C annealed film is attributed to preferred (00l) growth orientation and a reduction of the energy band gap.  相似文献   

10.
用射频磁控溅射在Pt/Ti/SiO2/Si基体上沉积Ba0.6Sr0.4TiO3(BST)薄膜,用X射线光电子能谱(XPS)研究BST薄膜表层在常规晶化和快速晶化条件下的结构特征.结果表明,常规晶化时,BST薄膜表层约3-5nm厚度内含有非钙钛矿结构的BST,随着温度的升高该厚度增加;快速晶化时,该厚度减薄至1nm内,随着温度的升高没有明显增加.元素的化学态分析结果表明,非钙钛矿结构的BST并非来自薄膜表面吸附的CO和CO2等污染物,而与表面吸附的其他元素(如吸附氧)对表层结构的影响有关.GXRD和AFM表明,致密的表面结构能有效的阻止表面吸附元素在BST膜体中的扩散,从而减薄含非钙钛矿结构层的厚度.  相似文献   

11.
To investigate the calcium phosphate forming ability of ZrO2 thin film, we prepared ZrO2/Si structure by a chemical solution deposition with a zirconium naphthenate as a starting material. Precursor sol was spin-coated onto the cleaned Si substrate and prefired at 500 °C for 10 min in air, followed by final annealing at 800 °C for 30 min in air. Surface morphology and surface roughness of the annealed layer were characterized by field emission-scanning electron microscope and atomic force microscope. After soaking for 5 days in a simulated body fluid, formation of the calcium phosphate on nanocrystalline ZrO2 layer annealed at 800 °C was observed by energy dispersive X-ray spectrometer. Fourier transform infrared spectroscopy revealed that carbonate was substituted into the calcium phosphate.  相似文献   

12.
In this study, effect of the post-deposition thermal annealing on copper oxide thin films has been systemically investigated. The copper oxide thin films were chemically deposited on glass substrates by spin-coating. Samples were annealed in air at atmospheric pressure and at different temperatures ranging from 200 to 600°C. The microstructural, morphological, optical properties and surface electronic structure of the thin films have been studied by diagnostic techniques such as X-ray diffraction (XRD), Raman spectroscopy, ultraviolet–visible (UV–VIS) absorption spectroscopy, field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The thickness of the films was about 520 nm. Crystallinity and grain size was found to improve with annealing temperature. The optical bandgap of the samples was found to be in between 1.93 and 2.08 eV. Cupric oxide (CuO), cuprous oxide (Cu2O) and copper hydroxide (Cu(OH)2) phases were observed on the surface of as-deposited and 600 °C annealed thin films and relative concentrations of these three phases were found to depend on annealing temperature. A complete characterization reported herein allowed us to better understand the surface properties of copper oxide thin films which could then be used as active layers in optoelectronic devices such as solar cells and photodetectors.  相似文献   

13.
SiCN thin films were prepared by high-dosage (2 × 1017 cm− 2) C+ ion implantation into α-SiNx:H films. The prepared films were then processed by thermal annealing for 2 h at 800 °C, 1000 °C and 1200 °C respectively. The composition and bond structure of SiCN were analyzed by X-ray photoemission spectroscopy, Auger electron spectroscopy, Raman spectroscopy and X-ray diffraction, and photoluminescence. Ternary structure with N bridging C and Si of the film annealed at 800 °C was found. The luminescent properties of SiCN have also been studied by synchrotron radiation at 20 K. Four emission bands were observed, corresponding to 2.95, 2.58, 2.29 and 2.12 eV at 20 K, respectively. In this paper, we report the experimental results and try to explain them.  相似文献   

14.
PZT (Zr : Ti = 0.53 : 0.47) thin films were fabricated by chemical solution deposition with metal naphthenates used as starting materials. Effect of final annealing temperature on epitaxy and surface morphology of the films were investigated. PZT films prefired at 200°C were crystallized to be highly (00l)/(h00)-oriented at final annealing temperatures of 750°–800°C. The film annealed at 750°C was smooth and no distinct texture was exhibited, while the rosette-type microstructure caused by lead volatilization was observed in the films after annealing at 800°C.  相似文献   

15.
Q. Ye  Z.F. Tang  L. Zhai 《Vacuum》2007,81(5):627-631
Microstructure and hydrophilicity of nano-titanium dioxide (TiO2) thin films, deposited by radio frequency magnetron sputtering, annealed at different temperatures, were studied by field emission scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and water contact angle methods. It is found that the crystal phase transforms from amorphous to rutile structure with increase of annealing temperature from room temperature to 800 °C. It is also indicated that the organic contaminants on the surface of the films can be removed and the oxygen vacancies can be reduced by the annealing treatment. Annealed at the temperature below 300 °C, amorphous TiO2 thin films show rather poor hydrophilicity, and annealed at the temperature range from 400 to 650 °C, the super hydrophilicity anatase of TiO2 thin films can be observed. However, when the annealing temperature reaches 800 °C, the hydrophilicity of the films declines mainly derived from the appearance of rutile.  相似文献   

16.
Thin stoichiometric aluminum oxide films were deposited using tris(diethylamino)aluminum precursor and water. Changes in aluminum oxide film and interfacial regions were studied after post deposition annealing under inert ambience at 600, 800 and 1000 °C using Fourier Transform InfraRed (FTIR) spectroscopy, X-ray Photoelectron Spectroscopy, and Scanning Transmission Electron Microscopy (STEM)/Electron Energy Loss spectroscopy (EELS) techniques. STEM/EELS analyses were also done on samples annealed in situ, i.e., inside the electron microscope at temperatures as high as 800 °C. Up to an annealing temperature of 600 °C, the atomic layer deposited alumina film was thermally stable and remained amorphous with no interfacial silica growth observed. After annealing at 800 °C for 5 min, the only change observed was a small increase in the interfacial layer thickness which was found to be mainly silicon oxide without any significant silicate content. Annealing at 1000 °C induced a significant increase in the interfacial layer thickness which consisted of a mixture of silicon oxide and aluminum silicate. The composition of the interfacial layer was found to change with depth, with silicate concentration decreasing with distance from the Si substrate. Also, the FTIR spectra exhibited strong absorption features due to Al-O stretching in condensed AlO6 octahedra which indicate crystallization of the alumina film after annealing at 1000 °C for 5 min.  相似文献   

17.
The Si---O---C---H composite thin films were deposited on a p-type Si(100) substrate using bis-trimethylsilane (BTMSM) and O2 mixture gases by an inductively coupled plasma chemical vapor deposition (ICPCVD). High density plasma of approximately 1012 cm−3 is obtained at low pressure (<320 mtorr) with an RF power of approximately 300 W in the inductively coupled plasma source where the BTMSM and oxygen gases are greatly dissociated. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) spectra show that the film has Si---CH3 and O---H related bonds. The CH3 groups formed the void in the film and the Si atoms in the annealed sample have different chemical states from those in the deposited sample. It means that the void is formed due to the removing of O---H related bonds during the annealing process. The relative dielectric constant of the annealed sample with the flow rate ratio O2/BTMSM as 0.3 at 500°C for 30 min is approximately 2.5.  相似文献   

18.
Fatigue-free bismuth-layered SrBi2Ta2O9 (SBT) films were deposited on Pt/Ti/SiO2/Si substrates by r.f. magnetron sputtering at room temperature. The variation of structure and electrical properties were studied as a function of annealing temperatures from 750–850 °C. The films annealed at 800 °C had a composition ratio of Sr:Br:Ta = 0.7:2.0:2.0. X-ray photoelectron spectroscopy signals of bismuth show an oxygen-deficient state within the SBT films. The films annealed at 800 °C have a thickness of 200 nm and a relatively dense microstructure. The remanent polarization (2P r), and the coercive field (2E c), obtained for the SIBT films, were 9.1 C cm–2 and 85 kV cm–1 at an applied voltage of 3 V, respectively. The films showed fatigue-free characteristics up to 1010 cycles under 5 V bipolar square pulses. The leakage current density was about 7 × 10–7 A cm–2 at 150 kV cm–1. The SBT films prepared by r.f. magnetron sputtering were attractive for application to non-volatile memories.  相似文献   

19.
This study investigated the composition, structure and optical properties of amorphous SiCo and GeCo films. The samples were prepared by radio frequency sputtering. Films were deposited with Co atomic concentrations in the range of 1.7–10.3 at.%. After deposition, the films were submitted to thermal treatments up to 900 °C and investigated by energy dispersive X-ray spectrometry, X-ray diffraction, Raman scattering and optical transmission spectroscopy. Additionally, magnetic force microscopy measurements were performed at room temperature. For comparison purposes, Co-free samples were also prepared, annealed and characterized following a similar procedure. The experimental results indicated the following: (1) the Co atoms were effectively and homogeneously incorporated into the amorphous hosts; (2) the as-deposited films (either pure or containing Co) were essentially amorphous; (3) annealing the films at high temperatures induced crystallization; (4) after crystallization, non-magnetic CoSi2 (silicide) and CoGe2 (germanide) phases were identified in the Co-containing Si and Ge films, respectively; (5) the optical properties of the films were significantly affected by the insertion of Co and by the annealing temperature; and (6) the samples exhibited a reduced magnetic signal at room temperature. These experimental observations were systematically studied, which are presented and discussed in this report.  相似文献   

20.
L.X. Phua  F. Xu  Y.G. Ma  C.K. Ong 《Thin solid films》2009,517(20):5858-211
Cobalt ferrite films were prepared by spray pyrolysis with post-annealing. For the as-deposited film, the differential scanning calorimetry measurement shows a crystallization peak at around 375 °C during the isochronal heating at 20 °C/min, and the X-ray diffraction pattern shows its amorphous-like characteristic. The isothermal post-annealings were performed for 2 h at various temperatures from 400 to 700 °C, leading to the crystallization of films, forming the spinel structure. The cross-sectional analysis with scanning electron microscopy shows that the film's thickness keeps almost constant after annealing, and the layered granular structure appears when the annealing temperature is high. The magnetic hysteresis loops of as-deposited and annealed films show that both the saturation magnetization and coercivity increase with the annealing temperature, due to the crystallization of CoFe2O4 phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号