共查询到19条相似文献,搜索用时 62 毫秒
1.
人脸识别技术是图像处理方面的重要技术,然而识别率不高却一直妨碍人脸识别技术的广泛应用。主成分分析(PCA)是人脸识别技术的一个重要算法,将PCA与AdaBoost算法相结合改进了原来的算法,并称新算法为PCA+AdaBoost算法。实验证明PCA+AdaBoost算法的识别率明显高于PCA算法,相对于Fisherface算法的识别率也有明显的提高。 相似文献
2.
3.
采用基于PCA(主成分分析)的特征脸人脸识别方法,判断一张给定的图像是否为人脸图像。该方法通过计算训练集的特征向量,得到一个由特征脸组成的子空间,并将训练集中的人脸图像投影到该子空间中。检测人脸时,将二维的人脸图像投影到脸空间,并计算该图像与脸空间之间的欧几里得距离,以距离是否小于某一设定的阀值来识别是否人脸图像,实验测试结果准确率为97.5%。 相似文献
4.
袁燕 《数字社区&智能家居》2007,(9):1414-1414,1421
本文简单介绍了人脸识别研究的发展历史,阐述了人脸识别研究方法的分类以及常用的人脸识别方法,并且提出人脸识别所面临的技术挑战以及研究趋势。 相似文献
5.
基于描述特征的人脸识别研究 总被引:4,自引:1,他引:4
针对基于主成分分析识别人脸存在计算复杂、不能准确地估计训练图像的协方差矩阵等问题,提出了一种基于描述特征的人脸识别算法(Expressive feature face recognitionalgorithm, EFFRA).该算法用训练图像的右奇异向量代替PCA求解的子空间的基向量,避免了将人脸图像转换成图像向量,明显降低了计算复杂性.进一步研究发现,EFFRA提取的每一个主成分向量中含有冗余,在此基础上,利用PCA实现了EFFRA的简化算法(MEFFRA),在ORL和Essex数据库上的实验结果表明,EFFRA及MEFFRA明显优于特征脸算法,MEFFRA的识别精度略好于EFFRA,但明显减少了对存储空间的需求. 相似文献
6.
本文研究了在每个对象只有一幅图像可用的情况下进行人脸识别。由于姿态变化所造成的自身遮掩和旋转的非线性,人脸识别的准确率将大大降低,广泛采用的主分量分析方法性能也将随之下降。通过分析用主分量分析生成的正面特征空间中的权值变化,我们发现给这些权值矢量加上系数,系统性能将大大提高。从而,我们提出了多姿态主分量分析方法。在UMIST人脸库上的实验结果表明我们的方法优于著名的特征脸方法,它大大的提高了识别率。 相似文献
7.
8.
人脸识别技术是人脸识别系统以人脸图像作为识别身份的媒介。研究了PCA算法的原理,基于matlab平台实现了人脸识别系统。该系统在对图像进行预处理的基础上,以ORL人脸库中部分图像为样本,采用K-L变换计算训练样本特征值及特征向量,得到特征脸向量,进而计算测试样本投影到特征脸空间的坐标系数,最后分类识别得出结果。实验证明该系统识别率较高,对实际应用有一定的参考价值。 相似文献
9.
提出了一种基于核主成分特征组合的人脸识别方法。首先利用主成分分析,获得原始输入图像的二阶特征脸图像;然后运用核主成分分析分别抽取原始图像和二阶特征脸图像的核主成分特征,最后将它们组合成一个组合特征向量,进行人脸识别。在ORL人脸库上的实验表明,两种图像的核主成分特征分别有着良好的特点,取得了较好的识别效果,优于核主成分分析和二阶特征脸的结果。 相似文献
10.
基于分块PCA的人脸识别方法 总被引:3,自引:0,他引:3
本文提出了一种称为M2PCA+FDA的新的人脸识别方法.新方法从模式的原始数字图像出发,先对样本图像进行分块,对分块得到的子图像矩阵采用PCA进行特征抽取,从而得到能代替原始模式的低维的新模式,然后,对新模式施行“Fisherfaces”方法,实现模式的分类.其特点是能有效地抽取图像的局部特征,正是这些特征使此类模式区别于彼类.在ORL和NUST603两个人脸数据库上对M2PCAA-FDA方法进行了测试,实验的结果表明,本文提出的方法在识别性能上优于“Fisherfaces”方法和PCA方法. 相似文献
11.
提出了一种二维类增广PCA(2DCAPCA)的人脸识别算法。用二维PCA(2DPCA)方法直接对人脸图像矩阵进行特征提取,对提取的特征进行归一化处理,将归一化处理后的特征与类别信息结合构成类增广矩阵,对类增广矩阵进行2DPCA处理,提取图像的类增广矩阵特征。由于该算法既保留了人脸图像的结构信息,又考虑了样本的类别信息,识别率有了较大的提高。通过Yale和FERET库上的实验表明,该方法对人脸识别是有效的。 相似文献
12.
由于Gabor小波描述的人脸特征维数太高,直接将Gabor小波提取的特征进行识别时出现计算量大、实时性差的问题,提出了基于Gabor小波变换与分块主分量分析的人脸识别新算法。首先对人脸图像进行Gabor小波变换得到人脸图像特征,然后用分块主分量分析方法对其进行降维、提取特征向量,最后用最近邻分类器分类识别。在ORL和NUST603人脸库上进行实验,结果表明,该方法的识别率优于传统PCA、分块PCA、Gabor小波变换与PCA结合的方法。 相似文献
13.
利用巴氏距离(Bhattacharyya Distance)和PCA(Principal Component Analysis)相结合进行人脸识别研究,提出了使用巴氏距离和PCA相合的算法对特征进行提取。当特征向量维数高时,首先对样本K-L(Karhunen-Loeve)变换进行降维,然后采用巴氏距离特征的迭代算法,得到最小错误率上界。基于ORL人脸数据库的实验表明该方法的识别性能优于LDA、HPCA、HLDA,采用文中的算法可以有效地提高识别率,减少巴氏距离特征计算时间,具有较强的实用性。 相似文献
14.
目前现有的人脸识别算法寻求最高的正确识别率,且假设所有的错误分类具有相同的错分代价,但此假设在现实的人脸识别系统中往往不成立。为此,提出一种基于代价敏感(Cost-Sensitive)主成分分析的人脸识别方法,该方法在主成分分析理论中引入一个代价敏感函数,将不同错误识别所造成的损失进行分类划分,以确定不同的损失代价,实现更精确的人脸识别。在AR、FERET和UMIST人脸数据集上的实验结果表明,与经典的基于子空间的人脸识别方法相比,提出的方法以最少的代价达到了较高的k最近邻分类识别精度。 相似文献
15.
针对基于可见光的人脸图像的识别容易受光照和表情变化的影响,人脸的表情变化仅限于局部等问题,以及图像的相位一致性特征不受图像的亮度或对比度影响的特点,提出了一种基于分块相位一致性的人脸识别算法。该算法用log-gabor滤波器对图像进行滤波,利用相位一致性模型提取相位一致性特征图像;对每幅特征图像进行分块主元分析(PCA)处理;融合所有子图像的距离信息,采用最近邻分类器进行分类识别。实验证明该方法具有更好的识别性能。 相似文献
16.
提出一种改进的小波包融合+2DPCA方法,先对图像进行二层小波包分解,再选取最利于判别分类的4幅高频子图进行融合,将融合子图与低频子图分别进行2DPCA降维和特征提取,最后进行决策级融合,得到识别结果。在Yale和JAFFE标准人脸库上的实验结果表明,该改进方法能有效提高识别率。 相似文献
17.
为了提高人脸识别效率,提出了一种基于PCA、LDA和SVM算法融合的人脸识别方法。使用主成分分析(PCA)将人脸图像变换到新的特征空间中,消除图像特征间的相关性和噪声,提取人脸全局特征,在实验阶段取较多的投影方向使其尽可能多的保持原始信息;使用线性判别分析(LDA)算法进一步投影变换降低数据维度;使用支持向量机(SVM)分类识别。将PCA、LDA和SVM三种算法的优点结合起来,在ORL数据库上进行仿真实验,结果表明该方法的识别率可达99.0%。 相似文献
18.
针对传统预处理方法在特征提取之前不能对人脸图像进行局部化处理,不能分析出感兴趣区域及受背景环境影响等缺点,提出一种人脸图像的自适应预处理方法。该方法通过二维Gabor滤波器从人脸图像中确定人眼位置,通过图像分割算法提取出感兴趣区域,缩放图像,运用主分量分析方法进行特征提取,通过二维最小近邻分类法进行分类,从而完成人脸识别过程。实验结果表明,基于自适应预处理的人脸识别方法能够有效去除头发、脖子、肩及与人脸无关的部分,提高了人脸识别率,且对一定的平移、旋转、尺度变化和表情有良好的鲁棒性。 相似文献
19.
为了提高人脸识别在复杂条件下的识别率,提出一种基于自适应加权梯度方向直方图特征(AW-HOG)的人脸识别方法。该方法首先将人脸图像分成均匀子块,并利用HOG描述算子提取分块人脸特征,根据各分块对识别的贡献率自适应地计算各分块的权重,然后融合权重系数以及各分块的HOG特征,形成AW-HOG特征并采用主成分分析(PCA)算法进行降维,最后利用支持向量机(SVM)进行分类识别。在Yale B 以及AR标准人脸库上的实验结果表明,提出的人脸识别方法在识别率上优于传统算法且对光照具有较强的鲁棒性。 相似文献