首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
李小培  艾照全  肖宇 《粘接》2014,(3):78-82
综简述了核壳型纳米二氧化钛/聚合物复合粒子的形成机理,重点对纳米TiO-核/聚合物-壳和2聚合物-核/纳米TiO-壳这2种复合粒子进行了介绍,指出了目前存在的问题和发展方向。2  相似文献   

2.
综述了基于核壳结构粒子的壳层结构调控导体或陶瓷核壳结构粒子/聚合物复合材料介电性能的最新研究进展,分析并总结了壳层设计、种类、结构、厚度等对复合材料介电性能的影响与调控机理,核壳结构粒子能协同改善复合材料的相对介电常数、击穿强度及降低损耗。界面缓冲区的绝缘外壳改善了复合体系界面相容性与填料分散性,有效抑制了载流子迁移,从而显著降低了体系的介电损耗及漏电流;此外,绝缘外壳还减缓了复合材料内部的电场畸变与集中,提高了材料的击穿强度。指出填料粒子核壳结构的合理设计及其与聚合物基体的协同效应,是提高复合电介质材料击穿强度的发展方向。  相似文献   

3.
核壳型醋丙乳液胶黏剂的制备及其性能研究   总被引:1,自引:0,他引:1  
朱勇  王平华  张奎  张健堂 《化学与粘合》2010,32(1):54-56,78
乳胶粒子形态控制是聚合物乳液研究的重要领域,几十年中在聚合物材料、涂料、胶黏剂等诸多领域的成功的应用使得核壳结构聚合物复合粒子备受关注。采用种子乳液聚合法,采用复配乳化剂体系合成了以醋酸乙烯酯为核,醋酸乙烯酯和丙烯酸丁酯为壳的乳液,并重点研究了单体滴加速率、SDS与OP-10质量比、引发剂用量对乳液性能的影响,通过透射电镜和红外光谱仪表征了乳胶粒子核壳结构的存在。  相似文献   

4.
核壳型乳液聚合研究进展   总被引:3,自引:0,他引:3  
综述了近年来核/壳结构聚合物乳液的聚合工艺、性能及核/壳结构的表征方法进行,讨论了影响核/壳结构聚合物乳胶粒子形态的各种因素。  相似文献   

5.
PMMA/PAN核-壳粒子制备工艺研究   总被引:4,自引:0,他引:4  
于彤  杨俊和  王霞  高楠 《煤炭转化》2005,28(2):88-91
加入适量的引发剂,通过无皂乳液聚合,以聚甲基丙烯酸甲酯( PMMA)核体为种子乳液,制备了PMMA/PAN核-壳乳液.实验中分别对引发剂量、丙稀腈( AN)滴加量对PMMA/PAN壳层厚度及其粒径和粒径分布的影响进行了较详细的研究,确定了种子乳液聚合法制备PMMA/PAN核-壳结构聚合物粒子的实验方法及条件.通过激光粒度仪、扫描电镜和透射电镜对核-壳粒子的形态结构进行了表征,证明了PMMA/PAN复合粒子的核-壳结构.  相似文献   

6.
本文介绍了丙烯酸酯聚合物核—壳粒子结构对改进环氧树脂内应力的作用。详细叙述了种子乳液聚合制备丙烯酸酯聚合物核—壳结构粒子的方法及固化树脂内应力的测定方法。讨论了聚合物粒子大小,引进交联单体后不同核—壳组成的影响及作用机理。  相似文献   

7.
核壳聚合与核壳结构聚合物乳液   总被引:15,自引:0,他引:15  
对核 /壳乳液聚合机理、方法、工艺以及核 /壳结构聚合物乳液的制备和性能进行了综述 ,重点讨论了各种因素对核 /壳结构聚合物乳胶粒子形态的影响 ,并回顾了核 /壳乳液聚合最新的研究动态。  相似文献   

8.
本文以具有一定交联度的聚丙烯酸正丁酯(Pn BA)为种子微球,苯乙烯(St)为第二单体,通过种子分散聚合法制备了Pn BA/PSt核壳结构聚合物微球。通过红外光谱、热重分析和X射线光电子能谱等对聚合物微球结构和性能进行表征。结果表明成功合成了Pn BA/PSt核壳结构聚合物微球,复合粒子Pn BA-XX/PSt具有正向核壳构型。  相似文献   

9.
原位聚合法制备纳米TiO2/有机硅改性丙烯酸酯复合乳液   总被引:10,自引:1,他引:10  
用硅烷偶联剂对纳米二氧化钛(TiO2)粒子表面进行预处理,使其表面由亲水性变为疏水性,并在其表面接枝上可反应的有机官能团。通过改性纳米TiO2表面上的原位聚合反应,制备了纳米TiO2/硅丙复合乳液。透射电子显微镜观察结果显示,乳液中存在两种结构的乳胶粒子:一种是以聚丙烯酸酯为核、有机硅聚合物为壳的核壳结构硅丙乳胶粒子;另一种是以纳米TiO2为核、有机聚合物为壳的纳米TiO2/聚合物复合结构乳胶粒子。乳胶粒子的结构形态可由乳化剂的用量控制。该复合乳液具有较好的杀菌效果,在较短时间内对细菌的杀灭率可达90%以上。  相似文献   

10.
聚苯乙烯/镍核壳结构纳米微粒的制备   总被引:4,自引:0,他引:4  
以磺化聚苯乙烯核壳结构凝胶粒子为模板,采用化学吸附和化学还原的方法,合成了聚苯乙烯/镍核壳复合粒子.讨论了pH值、温度、溶剂对复合粒子的影响.采用TEM、XRD对其结构、形貌进行了表征.结果表明,在所选择的实验条件下,成功地合成了以聚苯乙烯为核、镍纳米粒子为壳的核壳结构复合微球.  相似文献   

11.
In this study, the poly(methyl methacrylate/polystyrene (PMMA/PS) core‐shell composite latex was synthesized by the method of soapless seeded emulsion polymerization. The morphology of the PMMA/PS composite latex was core‐shell structure, with PMMA as the core and PS as the shell. The core‐shell morphology of the composite polymer latex was found to be thermally unstable. Under the effect of thermal annealing, the PS shell region first dispersed into the PMMA core region, and later separated out to the outside of the PMMA core region. This was explained on the basis of lowing interfacial tension between the PMMA and PS phases owing to the interpenetration layer. The interpenetration layer, which was located at the interface of the core and shell region, contained graft copolymer and entangled polymer chains. Both the graft copolymer and entangled polymer chains had the ability to lower the interfacial tension between the PMMA and PS phases. Also, the effect of thermal annealing on the morphology of commercial polymer/composite latex polymer blends was examined. The result showed that the core‐shell composite latex had the ability to enhance the compatibility of the components of polymer blends. The compatibilizing ability of the core‐shell composite latex was better than that of a random copolymer. Moreover, the effect of the amount of core‐shell composite latex on the morphology of the polymer blend was investigated. The polymer blends, which contained composite latex above 50% wt, showed the morphology of a double sea‐island structure. In addition, the composite latex was completely dissolved in solvent to destroy the core‐shell structure and release the entangled polymer chains, and then dried to form the entangled free composite polymer. The entangled free composite polymer had the ability to enhance the compatibility of the components of the polymer blend as usual. The weight ratio 3/7 commercial polymer/entangled free composite polymer blend showed the morphology of the phase inversion structure. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 312–321, 2003  相似文献   

12.
Hollow polymer latex particles containing a hydrophilic core were prepared by seeded emulsion polymerization with MAA/BA/MMA/St as comonomers, followed by stepwise alkalization treatment with ammonia. The size and morphology of composite latex particles was determined by TEM. The effects of the seeded emulsion polymerization conditions and alkalization treatment on the size and hollow structure of latex were investigated. The results showed that the optimum content of crosslinking agent in the shell polymers was about 0.5–1.0 wt %, emulsifier was about 0.8–1.1 wt %, and the core/shell weight ratio was 1/7. To obtain uniform hollow latex particles with large size, the starved feeding technique should be adopted in seeded emulsion polymerization, and the neutralization temperature should equal to the Tg of the shell polymer. Then, the obtained polymer particles under this condition had an excellent hollow structure. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
Poly(urethane acrylate) (PUA)/poly(methylmethacrylate) (PMMA) core–shell composite particles were prepared by two-stage emulsion polymerization. The sizes of composite particles could be varied from 25 to 210 nm by introducing polyoxyethylene (POE) groups to the urethane acrylate molecular backbone. Core–shell morphology was identified by investigating the polarity of the surface of the core and shell polymer particles and by measuring the contact angle of the composite particles. A composite particle prepared with relatively small particles (about 20 nm) did not show the core/shell morphology, because the high polar surface of the core polymer particle and the low-stage ratio of the core to the shell cause the formation of a core/shell two-stage latex to be more thermodynamically unstable. The fracture toughness of rubber-toughened PMMA containing PUA/PMMA composite particles increased as the particle sizes decreased and the shell thickness of the composite particles increased. In particular, when the average size of the composite particle was about 43 nm and the stage ratio was 50/50, the fracture toughness of the rubber-toughened PMMA increased more than three times compared with that of pure PMMA. Furthermore, the transparency of toughened PMMA could be maintained up to 91% in the visible spectra range. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2291–2302, 1998  相似文献   

14.
Fe2O3 particles with diameter of 3–5 nm were encapsulated in polymer spheres (styrene/butyl acrylate/acrylic acid terpolymer latex) by emulsion polymerization. Control of the pH value of the medium and modification of the latex prior to the second polymerization were of importance in determining the microstructure and morphology of the composite particles. The interaction between Fe2O3 and seed latex was confirmed by IR spectral changes of the surface groups of the latex particles. Mossbauer spectra gave evidence for the changes of electric density and electric field symmetry around Fe2O3, and surface photovoltage spectra indicated that the Fe2O3 particles were encapsulated in polymer. It was shown by all the results that the composite microspheres of size 80 nm had a core–shell structure with trilayers of seed latex core, Fe2O3 nanoparticles middle layer and polymer shell. © 1997 SCI.  相似文献   

15.
S. Shi  K. Hosoi 《Polymer》2005,46(11):3567-3570
Precipitation polymerization of acrylonitrile in aqueous phase was performed in the presence of submicrometer-sized poly(methyl methacrylate) (PMMA) seed particles. The resulting PMMA/polyacrylonitrile (PAN) composite latex particles showed a novel well-defined surface morphology like rambutan. The formation of such surface structure was ascribed to the facts that PAN polymer is crystalline and scarcely swollen by its monomer. The composite particles had a core/shell structure with a PAN shell surrounding a PMMA core.  相似文献   

16.
In this study, the hollow latex particle was synthesized by three processes. The first process was to synthesize the poly(methyl methacrylate-co-methacrylic acid) (poly(MMA-MAA)) copolymer latex particles by the method of soapless emulsion polymerization. Following the first process, the second process was to polymerize MMA, MAA, 3,3-(trimethoxysilyl) propyl methacrylate (MPS), and ethylene glycol dimethacrylate in the presence of poly(MMA-MAA) latex particles to form the linear poly(MMA-MAA)/crosslinking poly(MMA-MAA-MPS) core–shell latex particles. In the third process, the core–shell latex particles were heated in the presence of ammonia to form the poly(MMA-MAA-MPS) hollow latex particles. A sufficient heating time and high-heating temperature were necessary for the ammonia to dissolve the linear poly(MMA-MAA) core to form a perfect hollow structure. The crosslinking poly(MMA-MAA-MPS) shell was a barrier for the ammonia to diffuse into the latex particles so that the latex particle with the high-crosslinking shell showed an imperfect hollow structure. Besides, the hollow poly(MMA-MAA-MPS) latex particles reacted with ZnO nanoparticles, which were synthesized by a traditional sol-gel method, to form the polymer/inorganic poly(MMA-MAA-MPS)/ZnO composite hollow latex particles. With the increase of crosslinking degree would increase the amount of ZnO bonding. Moreover, the poly(MMA-MAA-MPS) hollow latex particles were used as carriers to load with the model drug, caffeine. The release of caffeine from poly(MMA-MAA-MPS) hollow latex particles was investigated.  相似文献   

17.
In the absence of emulsifier, we prepared stable emulsifier‐free polymethylmethacrylate/polystyrene (PMMA/PSt) copolymer latex by batch method with comonomer N,N‐dimethyl, N‐butyl, N‐methacryloloxylethyl ammonium bromide (DBMEA) by using A1BN as initiator. The size distribution of the latex particles was very narrow and the copolymer particles were spherical and very uniform. Under the same recipe and polymerization conditions, PMMA/PSt and PSt/PMMA composite polymer particle latices were prepared by a semicontinuous emulsifier‐free seeded emulsion polymerization method. The sizes and size distributions of composite latex particles were determined both by quasi‐elastic light scattering and transmission electron microscopy (TEM). The effects of feeding manner and staining agents on the morphologies of the composite particles were studied. The results were as follows: the latex particles were dyed with pH 2.0 phosphotungestic acid solution and with uranyl acetate solution, respectively, revealing that the morphologies of the composite latex particles were obviously core–shell structures. The core–shell polymer structure of PMMA/PSt was also studied by 1H, 13C, 2D NMR, and distortionless enhancement by polarization transfer, or DEPT, spectroscopy. Results showed that PMMA/PSt polymers are composed of PSt homopolymer, PMMA homopolymer, and PMMA‐g‐PSt graft copolymers; results by NMR are consistent with TEM results. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1681–1687, 2005  相似文献   

18.
An emulsion of polystyrene/poly (butylacrylate-methyl methacrylate acrylic acid) core/shell latex particles (PS/P (BA-MMA-AA)) has been prepared by use of three synthetic methods. The effects of synthetic methods on the distribution of carboxyl groups in latex particles were studied. The results show that the seed emulsion polymerization in which the pre-emulsified monomers were added by dropping method to the second stage is the best technique for obtaining the optimum distribution of carboxyl groups on the surface of the latex particles. Furthermore, by using PS/P (BA-MMA-AA), a type of novel composite emulsion of silica sol-PS/P (BA-MMA-AA) was synthesized with the above method. By observation through transmission EM, the morphology of the latex particles obtained shows that a composite structure has been formed between silica sol particles and organic polymer particles.  相似文献   

19.
We have investigated the effects of hydrophobic interactions on the rheological behavior and microstructure of suspension of carboxylated core‐shell latex particles with changing hydrophobicity of shell polymer and suspending medium. The carboxylated core‐shell latex particles formed lattice‐like microstructures in aqueous suspension with dissociation of carboxyl groups. With increasing hydrophobicity of the shell polymer, the interparticle distance ξ in the microstructure decreased. However, ξ increased with increasing hydrophobicity of the suspending medium. The effect of hydrophobic interaction on ξ was explained by the steric stabilization theory for particles with grafted polymer on the surface. As the carboxylated core‐shell latex particles overlapped each other in the microstructure, an attractive force was generated between the particles in aqueous suspension. With increasing hydrophobicity of the shell, the attractive force increased, but with increasing hydrophobicity of the suspending medium, the attractive force decreased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4153–4158, 2006  相似文献   

20.
In this work, the poly(methacrylic acid–co–N-isopropylacrylamide)/Nano ZnO thermosensitive composite hollow latex particles was synthesized by three processes. The first process was to synthesize the poly(methyl methacrylate-co- methacrylic acid) (poly(MMA–MAA)) copolymer latex particles by the method of soapless emulsion polymerization. The second process was to polymerize MAA, N-isopropylacrylamide (NIPAAm) and N,N′-Methylenebisacrylamide (MBA) in the presence of poly(MMA–MAA) latex particles to form the linear poly(MMA–MAA)/crosslinking poly(MAA-NIPAAm) core–shell latex particles, and then the core–shell latex particles were heated in the presence of ammonia solution to form the poly(MAA-NIPAAm) thermosensitive hollow latex particles. In the third process, the poly(MAA-NIPAAm) hollow latex particles reacted with ZnO nanoparticles to form the poly(MAA-NIPAAm)/ZnO thermosensitive composite hollow latex particles on which the ZnO nanoparticles were adsorbed. Besides, a novel process was used to synthesize the poly(MAA-NIPAAm)/ZnO composite latex particles in which the ZnO nanoparticles were encapsulated. The effects of various variables on the morphology of poly(MAA-NIPAAm)/ZnO composite hollow latex particle were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号