首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
运用粒子群算法优化立体仓库系统堆垛机作业路线。实际应用证明,该算法用于自动化立体仓库系统堆垛机作业路线优化是有效可行的。  相似文献   

2.
为解决应用于旅行商问题的基本粒子群算法存在的收敛精度不高且早熟等问题,提出一种改进自适应杂交退火粒子群(IAHAPSO)算法。该算法采用基于种群离散度的分种群式自适应调整惯性权重,引导种群的正确进化发展方向;采用模拟退火算法更新群体极值的策略,避免粒子搜索陷入局部最优解;并在种群发展过程中引入遗传杂交算子,增加种群的多样性。通过3种标准TSPLIB测试集验证所提IAHAPSO算法在求解精度及效率上的可行性和优越性。以四轴裁剪机试验系统进一步验证所提算法的有效性。  相似文献   

3.
4.
改进粒子群优化算法在工程优化问题中的应用研究   总被引:10,自引:1,他引:10  
粒子群优化(PSO)算法是一种群集智能方法,它通过粒子之间的合作与竞争以实现对多维复杂空间的高效搜索。在对于粒子群群体构造和粒子多样性对收敛速度和精度影响的研究基础上提出了一种改进型粒子群优化算法。针对工程中的有约束的优化问题,将改进粒子群算法与函数法相结合进行求解。计算实例表明改进型粒子群优化算法大大改善了传统PSO算法的全局收敛性能,解的精度提高了很多。  相似文献   

5.
针对串行优化算法在搜索时间上的不足,提出了一类组合优化问题的并行粒子群算法。该算法将粒子群划分为多子种群异步并行运算,利用不同范围内的多极值,指导粒子速度更新,加入邻域搜索策略,提高了搜索速度,同时也有效地防止了粒子在最优点附近发生的振荡现象。仿真实验表明,该算法与其他搜索方法比较,在搜索时间和求解质量上具有优势。现已应用于钢铁生产热轧计划编制中,并用实际生产数据表明了该算法的可靠性。  相似文献   

6.
针对单目标粒子群优化算法局部搜索能力差,不能有效求解高维、复杂工程问题等缺点,提出了一种改进的粒子群优化算法,即单纯形粒子群优化方法的混合算法(SM PSO)。该混合算法,在继承粒子群优化算法原有优点的同时,不但可减少计算规模,且有效地增强了粒子群优化算法的局部搜索能力,提高了算法的鲁棒性能。文中采用30维经典测试函数及齿轮减速器优化问题作为算例,验证了该算法的优越性能。  相似文献   

7.
提出了炉次数未知的炼钢连铸一体化生产的组炉模型.对该模型直接求解存在大量不可行解的困难进行分析,提出将该模型转化为伪旅行商问题的方法,并提出采用离散粒子群优化算法求解该问题.针对离散粒子群优化收敛速度和精度低的缺点,提出了一种基于序列倒置的改进离散粒子群优化算法.引入学习选择概率来选择学习粒子,利用运行代数阈值常数确定当前粒子何时向全局最优粒子学习,并通过局部最优子粒子群比决定局部最优子群的规模.讨论了这些参数的选择原则,并给出了相应参考选择范围.实验研究表明,所提模型是合适的,所提改进算法是有效的.  相似文献   

8.
葛锐  陈建桥  魏俊红 《机械科学与技术》2007,26(8):1063-1066,1070
针对粒子群算法在寻优过程中存在的容易陷入局部极小、收敛速度慢等缺点,结合粒子在实际寻找食物的过程中,大部分可以飞到其预期的最佳位置,而少数粒子由于受不确定因素影响,发生飞行偏离,本文提出了一种改进粒子群算法。算法中的模拟不确定因素干扰操作,能够有效避免群体过度集中现象,有效增加了种群的多样性。典型复杂机械优化设计的仿真结果表明,该改进算法能够快速、有效地进行全局搜索。  相似文献   

9.
几何约束问题可以等价为求解非线性方程组问题。几何约束问题先被转化为一个优化问题。采用基于小生境改进粒子群优化算法来求解该优化问题。由于经典粒子群优化算法容易陷入局部最优,出现早熟现象。为此,基于小生境原理,提出一种小生境改进粒子群优化算法(niche improved particle swarm optimization,NIPSO)。该算法在进行速度和位置更新后,根据小生境数确定个体历史最好位置中的孤立点。然后对所有个体历史最好值差于孤立点值的粒子使用交叉和选择算子进行更新。实验表明,该方法可以提高几何约束求解的效率和收敛性。  相似文献   

10.
装配顺序规划是计算机辅助工艺设计的一个重要环节,影响着轿车车身的装配质量和效率.针对当前装配顺序规划易产生组合爆炸等问题,提出了基于粒子群算法的装配顺序规划算法.装配偏差是影响装配质量的重要因素,因此应用装配体的装配偏差评价装配顺序.在装配顺序规划过程中,首先将装配顺序编码为粒子,根据所建立的判断规则进行识别粒子的可行性,并通过装配偏差评估可行粒子的适应度值,然后根据粒子群算法过程规划装配顺序,最后采用前翼子板案例阐述装配顺序的生成和优化过程.  相似文献   

11.
基于改进粒子群算法的生产批量计划问题研究   总被引:12,自引:0,他引:12  
为求解基于成组单元有能力约束的生产批量计划问题,提出了一种基于二进制粒子群算法和免疫记忆机制相结合的方法,并阐明了该方法的具体实现过程。在该方法中,采用罚函数法处理约束条件,每个粒子都代表一组可用于描述具体批量计划方案的规则组合。通过对其他文献中一个仿真实例的计算和结果比较,表明该算法在寻优能力、求解速度和稳定性等方面都明显优于文献中的遗传算法。  相似文献   

12.
基于拥挤距离排序的多目标粒子群优化算法及其应用   总被引:6,自引:0,他引:6  
针对多目标粒子群算法在全局寻优能力和Pareto集多样性上的不足,提出基于拥挤距离排序的多目标粒子群算法.该算法采用精英策略,基于个体拥挤距离降序排列,进行外部种群的缩减和全局最优值的更新,并在内部粒子群中引入小概率变异机制,增强算法的全局寻优能力,控制Pareto最优解的数目,同时保证其收敛性和多样性特征.在电梯曳引性能的多目标优化应用中,证明了该算法对于两目标和三目标优化问题求解的有效性.不同规模实例的运算对比表明,该算法在Pareto前沿的收敛性和多样性方面均优于改进强度Pareto进化算法,且缩短了运算时间,具有较高的效率与鲁棒性.  相似文献   

13.
基于决策偏好的多目标粒子群算法及其应用   总被引:3,自引:0,他引:3  
针对传统多目标粒子群算法在解决复杂多目标优化问题上的不足,提出一种基于决策偏好的交互式多目标粒子群算法。该算法考虑决策者的正偏好和负偏好对粒子的引导作用,首先计算外部种群粒子与双极偏好点的相对贴近度,并进行排序;根据排序结果进行外部种群管理和全局最优解更新;使用δ-邻域值控制Pareto解集的分布性。在随机多目标库存控制应用中,证明了该算法对复杂应用问题求解的有效性,性能对比结果表明,该算法的收敛性、多样性和运算时间优于基于参照点的第二代非支配解排序遗传算法。  相似文献   

14.
通过对并行公差优化设计的分析,将其视为一种混合变量组合优化问题.首先给出了并行公差优化设计的数学模型,然后将其映射为一类特殊的旅行商问题--顺序多路旅行商问题,从而降低了问题的求解难度.利用蚁群优化算法和粒子群优化算法,分别在求解离散和连续变量优化时的优势,提出了一种求解并行公差优化设计问题的混合群集智能算法.通过一个计算实例,将混合群集智能算法分别与遗传算法和模拟退火算法进行了比较,结果表明,前者具有更强的搜索能力和较高的效率.同时,混合群集智能算法也为求解一般意义的混合变量优化问题提供了借鉴和参考.  相似文献   

15.
解决无等待流水车间调度问题的离散粒子群优化算法   总被引:1,自引:0,他引:1  
针对以生产周期为目标的无等待流水车间调度问题,提出了一种离散粒子群优化算法.研究了无等待流水车间调度问题的快速邻域搜索技术,并将其分别用于加强粒子、个体极值或全体极值的邻域探索能力,得到了三种改进的离散粒子群优化算法.基于典型算例的试验,表明了上述算法的有效性.  相似文献   

16.
求解车辆路径问题的改进微粒群优化算法   总被引:23,自引:1,他引:23  
微粒群优化算法是求解连续函数极值的一个有效方法。研究了用该算法求解车辆路径的问题。设计了求解车辆路径问题的一种新的实数编码方案,将车辆路径问题转化成准连续优化问题,并采用罚函数法处理约束条件。应用该微粒群优化算法求解了多个车辆路径问题的算例,并与遗传算法和双种群遗传算法进行了比较。计算结果表明,该算法可以更有效地求得车辆路径问题的优化解,是解决车辆路径问题的有效方法。  相似文献   

17.
基于粒子群算法的并行多机调度问题研究   总被引:11,自引:0,他引:11  
将港口拖轮作业调度问题描述为一类带特殊工艺约束的并行多机调度问题,采用粒子群算法求解该类调度问题,提出了一种2维粒子表示方法,通过对粒子位置向量进行排序生成有效调度,并采用粒子位置向量多次交换的局部搜索方法来提高算法的搜索效率。最后,通过计算验证了混合粒子群算法的有效性。  相似文献   

18.
刘剑波  张南  郭文涛 《机械》2009,36(2):32-34
粒子群优化(Particle Swarm Optimizer,PSO)算法是数据挖掘技术的一种算法。数据挖掘就是从大型数据库中的数据中提取人们感兴趣的知识。PSO算法模仿鸟群、鱼群的行为,通过群中的每个个体即粒子,依靠本身的速度向量和群信息,在多维搜索空间中搜索找到最优解。并行粒子群算法可以减小粒子间的相互干扰,扩大搜索范围;对于大规模或超大规模的多变量求解具有重要的意义,可以提高解的速度和解的质量。本文提出了并行粒子群的改进算法。同时将改进的并行粒子群算法应用于数据挖掘的分类中。实验采用IRIS数据集,它有3个类别,分别为Setosa,Versicolor,Virginica,每个类别包含50个例子。每个例子有4个属性,分别为花萼长度,花萼宽度,花瓣长度和花瓣宽度,将数据按9:1分成两部分,大的作为训练样本,小的作为测试样本。得到一个分类规则,将这规则用于测试集,准确率为91.5%。实验结果表明该算法可行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号