首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions of ethylene glycol and ethanol have been studied on Fe/Pt(1 1 1) and Ti/Pt(1 1 1) bimetallic surfaces utilizing temperature programmed desorption (TPD). These results are compared to our previous studies on Ni/Pt(1 1 1) to illustrate the trend in the reforming activity on 3d-Pt bimetallic surfaces. The oxygenates decomposed on these surfaces to produce mainly H2 and CO. The bimetallic surfaces were prepared by thermal evaporation of Fe or Ti onto Pt(1 1 1), using Auger electron spectroscopy (AES) to monitor surface compositions. Surfaces prepared by deposition of a monolayer of Fe or Ti on Pt(1 1 1), designated Fe–Pt–Pt(1 1 1) or Ti–Pt–Pt(1 1 1), displayed higher reforming activity for both ethylene glycol and ethanol than the corresponding subsurface monolayer Pt–Fe–Pt(1 1 1) and Pt–Ti–Pt(1 1 1) structures or clean Pt(1 1 1). The reforming yield increased as the surface d-band center, calculated from density functional theory (DFT), shifted closer to the Fermi level. The reforming selectivity of oxygenates, especially ethanol, began to decrease as the d-band center shifted closer to the Fermi level. Combining results in the current work with previous studies on Ni/Pt(1 1 1), a general criterion can be formulated for selecting 3d-Pt bimetallic surfaces with desirable reforming activity and selectivity.  相似文献   

2.
Selective oxidation of methanol to dimethoxymethane (DMM) was conducted in a fixed-bed reactor over an acid-modified V2O5/TiO2 catalyst. The influence of the acid modification on its structure, redox and acidic properties, and catalytic performance for methanol oxidation were investigated. The results indicated that the content of vanadia in the catalyst exhibits a vital influence on the dispersion of vanadium species, while the acid modification can enhance its surface acidity. Proper amounts of the acid (W() = 15%) and V2O5 (W(V2O5) = 15%) components loaded in the acid-modified V2O5/TiO2 catalyst are able to build a bi-functional circumstance that is favorable for the formation of DMM with high activity and selectivity. As a result, for the selective oxidation of methanol, the H2SO4-modified V2O5/TiO2 catalyst gives a much higher DMM yield at 150 °C than the unmodified one.  相似文献   

3.
A new ferroelectric solid solution of (1 − x)Ba(Lu1/2Nb1/2)O3-xPbTiO3 (BLN-PT) (0 ≤ x ≤ 1) has been synthesized by solid state reactions. Its structure and electric properties have been studied by X-ray diffraction and di-/ferro-electric measurements. Based on the investigation, a partial solid state phase diagram of the binary BLN-PT ceramics system has been established, which exhibits a morphotropic phase boundary (MPB) region in the composition range of 0.64 ≤ x ≤ 0.68. The Curie temperature is measured to be around 250 °C in the vicinity of the MPB region, which is much higher than that of PMNT or PZNT system. The dielectric behavior has been discussed based on Curie-Weiss Law and Lorentz-type quadratic relationship. With increasing PT content, a transformation from relaxor to ferroelectric phase has been demonstrated in the solid solution system.  相似文献   

4.
Isomerization of n-hexane and n-pentane were studied using equivalent 5 monolayers of MoO3 deposited on TiO2. Addition of 2.5% Pt by weight of MoO3 on the Mo catalyst resulted in an increase in the catalytic activity of the system in favor of hydrocracking products. Surface characterization by XPS-UPS and ISS reveal that the sample surface contains Oxygen, Molybdenum, Platinum and Titanium. Apparently, the metallic properties of the deposited Pt favors the hydrocracking reactions and becomes dominant at reaction temperatures higher than 623 K. Balanced metal-acid functions in MoO2 − x(OH)y phase seems to be in optimized condition toward the hydroisomerization process. The contribution of Platinum addition to this catalytic reaction is not obvious. Combination of surface XPS-UPS, ISS and catalytic reactions carried out at similar experimental conditions enabled us to have better insight concerning the catalytic activities of the different chemical species present on the sample surface.  相似文献   

5.
In this paper, Me double hydroxides (Me = Co and Ni)/TiO2 nanotube composites were synthesized by a simple chemical co-precipitation method. Electrochemical properties of the composites were examined by cyclic voltammetry, galvanostatic and impedance measurements. The highest specific capacitance values of 1053 F/g could be achieved with Me double hydroxides loaded on the TiO2 nanotube, which was comparable to that of hydrated ruthenium oxide.  相似文献   

6.
7.
Porous TiO2 thin films were prepared on the Si substrate by hydrothermal method, and used as the Pt electrocatalyst support for methanol oxidation study. Well-dispersed Pt nanoparticles with a particle size of 5–7 nm were pulse-electrodeposited on the porous TiO2 support, which was mainly composed of the anatase phase after an annealing at 600 °C in vacuum. Cyclic voltammetry (CV) and CO stripping measurements showed that the Pt/TiO2 electrode had a high electrocatalytic activity toward methanol oxidation and an excellent CO tolerance. The excellent electrocatalytic performance of the electrode is ascribed to the synergistic effect of Pt nanoparticles and the porous TiO2 support on CO oxidation. The strong electronic interaction between Pt and the TiO2 support may modify CO chemisorption properties on Pt nanoparticles, thereby facilitating CO oxidation on Pt nanoparticles via the bifunctional mechanism and thus improving the electrocatalytic activity of the Pt catalyst toward methanol oxidation.  相似文献   

8.
Methanol oxidation performance of a carbon-supported Pt-Ru alloy catalyst used at the direct methanol fuel cell (DMFC) anode is improved by adding TiO2. However, the methanol oxidation performance of the electrocatalyst described above must be enhanced further to realize practical application in DMFCs. In this study, we used our original surface-modifying technique termed the “polygonal barrel-sputtering method” to prepare a carbon-supported Pt-Ru and TiO2 (Pt-Ru/TiO2/C) electrocatalyst offering higher methanol oxidation performance. The obtained results show that the methanol oxidation performance of the prepared Pt-Ru/TiO2/C is superior to that using wet process as the TiO2 deposition method. Furthermore, for our sputtering method, the peak current of methanol oxidation on the Pt-Ru/TiO2/C is enhanced by increasing the TiO2 deposited amount up to 2.8 wt.%. These results suggest that a Pt-Ru/TiO2 interface area is increased using the polygonal barrel-sputtering method, providing the high methanol oxidation performance of Pt-Ru/TiO2/C.  相似文献   

9.
DFT periodic calculations have been used to study the influence of an external electric field on the adsorption of CO on Pt(1 1 1). Particular attention has been focused on the determination of the CO and metal-CO vibrational Stark tuning rates. Stark tuning rates have been calculated at various CO coverages; a linear dependence between the CO Stark tuning rate and the CO surface coverage has been found. We have calculated a value of 68.94 cm−1/(V/Å) for the zero-coverage limit CO Stark tuning rate, in good agreement with the experimental value of 75 ± 9 cm−1/(V/Å). Like the CO Stark tuning rate, the metal-CO vibrational Stark tuning rate also increases as CO surface coverage decreases. In addition, we have found (at 0.25 ML) that the CO Stark tuning rate is similar at different adsorption sites, being only slightly larger at high-coordinated sites. CO vibrational Stark tuning rates of 45.58, 47.96, 47.61 and 48.49 cm−1/(V/Å) have been calculated for ontop, bridge, hcp and fcc hollow sites, respectively. Calculations at high coverage using a (2 × 2)-3CO model yield a CO Stark tuning rate of 21.08 and 25.93 cm−1/(V/Å) for ontop and three-fold hollow CO, respectively. These results show that the CO Stark tuning rate for CO adsorbed at high coordinated sites is only slightly larger than that at ontop sites. This result is in contradiction with experiments, which reported larger CO Stark tuning rates at high-coordinates sites than at ontop sites. Furthermore, the calculated metal-CO stretch is larger for ontop sites than for high-coordinated sites; this result is in disagreement with previous DFT cluster model calculations. Unfortunately, there is not experimental information available to support either result. Finally, we have also studied the CO adsorption site preference dependence on electric fields. We have found that CO adsorbs preferentially at high coordinated sites at more negative fields, and at ontop sites at more positive fields, in agreement with previous experiments and DFT cluster model calculations.  相似文献   

10.
In situ electrochemical-scanning tunneling microcopy (EC-STM) was employed to investigate the etching dynamics of the moderately doped n-Si(1 1 1) electrode during cyclic voltammetric perturbation and at the seven different potentials including the open circuit potential (OCP) in 40% NH4F solution at pH 10, which was prepared from 40% NH4F and concentrated NH4OH solution. The etching rate was significant at OCP and showed an exponential dependence on the potential applied to the silicon substrate electrode. Although some triangular pits were generated at the Si(1 1 1) surface, at the potentials more negative than OCP the site dependence in the removal of surface silicon atoms prevailed and led to the atomically flat Si(1 1 1):H surfaces with sharply defined steps of the step height 3.1 Å, where the interatomic distance of 3.8 Å was observed with a three-fold symmetry. At the potentials sufficiently more positive than OCP, macroporous hole was formed to limit further in situ EC-STM study. The results were compared with in situ EC-STM studies of the etching reaction of n-Si(1 1 1):H in the aqueous solution of dilute ammonium fluoride at pH 5, 40% NH4F at pH 8, and 1 M NaOH reported in the literature.  相似文献   

11.
Nanorods TiO2, Fe-TiO2 (3 and 2 at.% Fe), V-TiO2 (5 at.% V) were prepared by a low temperature method and characterized by powder X-ray diffraction, thermal analysis, transmission electron microscope and BTE surface area analysis. The as-prepared samples were evaluated as catalysts for photodegradation of Congo red aqueous solution under the sunlight. Nanorods Fe-doped TiO2 shows higher adsorption and also higher photocatalytic degradation of Congo red solution compared to pure nanorods TiO2 rutile. A higher activity is obtained when the amount of doped Fe is 2 at.%, compared to 3 at.%. However, nanorods V-TiO2 does not show neither adsorption nor photodegradation activity of Congo red solution.  相似文献   

12.
TiO2–Ni(OH)2 bilayer electrodes were prepared by the cathodic electrodeposition of Ni(OH)2 layer on a TiO2/ITO substrate. The porous Ni(OH)2 layers were obtained at relatively high current densities (≥1.0 mA cm−2), and the particle size increased with increasing the deposition current density. A porous nanostructured TiO2–Ni(OH)2 bilayer was obtained at a current density of 1.0 mA cm−2. The effects of OH concentration in the electrolyte and surface structure in the Ni(OH)2 layer on storage of the oxidative energy of TiO2 were investigated. In our experimental conditions the oxidative energy storage of an UV-irradiated TiO2 photocatalyst in Ni(OH)2 was obviously enhanced in the electrolyte with 1.0 M OH. The porous nanostructured TiO2–Ni(OH)2 bilayer electrode showed the notably improved oxidative energy storage performance, resulting from its porous structure and nanostructured Ni(OH)2 particles. The TiO2–Ni(OH)2 bilayer electrode during UV irradiation exhibited much higher potentials and larger photocurrent than the TiO2/ITO electrode. The transition from Ni(OH)2 to NiOOH under UV irradiation proceeded in the potential range of −0.5 to −0.2 V, much more negative than the Ni(OH)2/NiOOH redox potential. A possible mechanism on the oxidative energy storage of an UV-irradiated TiO2 photocatalyst in Ni(OH)2 was proposed, and the related experimental results were discussed in terms of the suggested model.  相似文献   

13.
Amorphous Ru1−yCryO2/TiO2 nanotube composites were synthesized by loading different amount of Ru1−yCryO2 on TiO2 nanotubes via a reduction reaction of K2Cr2O7 with RuCl3·nH2O at pH 8, followed by drying in air at 150 °C. Cyclic voltammetry and galvanostatic charge/discharge tests were applied to investigate the performance of the Ru1−yCryO2/TiO2 nanotube composite electrodes. For comparison, the performance of amorphous Ru1−yCryO2 was also studied. The results demonstrated that the three dimensional nanotube network of TiO2 offered a solid support structure for active materials Ru1−yCryO2, allowed the active material to be readily available for electrochemical reactions, and increased the utilization of active materials. A maximum specific capacitance 1272.5 F/g was obtained with the proper amount of Ru1−yCryO2 loaded on the TiO2 nanotubes.  相似文献   

14.
Adsorption of adenine on Au(1 1 1) and Au(1 0 0) electrodes is studied by cyclic voltammetry, impedance and chronoamperometric measurements in 0.1 M and 0.01 M KClO4 and in 0.5 M NaF solutions. The experiments performed with flame-annealed electrodes at different contact potentials, scan potential limits and scan rates, suggest different adsorption behaviour on the unreconstructed and reconstructed surface domains. This is confirmed by comparing the results obtained with electrochemically annealed unreconstructed and with flame-annealed reconstructed surfaces. In both cases the initial electrode surface state is characterised by the Epzc values. The adsorption on reconstructed surfaces takes place at more positive potentials than on the unreconstructed surfaces and induces the lifting of the reconstruction.The thermodynamic analysis is performed on the chronoamperometric data for adenine desorption on well characterised unreconstructed Au(1 1 1) surfaces. To this end a new methodology of the chronoamperometric experiments is introduced. Quantitative thermodynamic adsorption parameters such as surface tension, Gibbs surface excess, Gibbs energy of adsorption, potential versus Gibbs excess slope and electrosorption valency are determined. Weak chemisorption of adenine is inferred with a molecular orientation independent on the coverage and on the electrode potential. It is proposed that adsorbed adenine molecules adopt a tilted orientation at the surface to facilitate the coordination to the gold atoms.  相似文献   

15.
Surface modification and characterization of TiO2 nanoparticles as an additive in a polyacrylic clear coating were investigated. For the improvement of nanoparticles dispersion and the decreasing of photocatalytic activity, the surface of nanoparticles was modified with binary SiO2/Al2O3. The surface treatment of TiO2 nanoparticles was characterized with FTIR. Microstructural analysis was done by AFM. The size, particle size distribution and zeta potential of TiO2 nanoparticles in water dispersion was measured by DLS method. For the evaluation of particle size and the stability of nanoparticles in water dispersions with higher solid content the electroacoustic spectroscopy was made. To determine the applicability and evaluate the transmittance of the nano-TiO2 composite coatings UV–VIS spectroscopy in the wavelength range of 200–800 nm was employed. The results showed that surface treatment of TiO2 nanoparticles with SiO2/Al2O3 improves nanoparticles dispersion and UV protection of the clear polyacrylic composite coating.  相似文献   

16.
The isothermal oxidation behavior of in situ (TiB2 + TiC)/Ti3SiC2 composite ceramics with different TiB2 content has been investigated at 900-1200 °C in air for exposure times up to 20 h by means of X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive spectroscopy. The oxidation of (TiB2 + TiC)/Ti3SiC2 composites follows a parabolic rate law. With the increase in TiB2 content, the oxidation weight gain, thickness of the oxidation scale, and parabolic rate constant decrease dramatically, which suggests that the incorporation of TiB2 greatly improves the oxidation resistance of the composites. With the increase in oxidation temperature, the enhancement effect becomes more pronounced. Due to the incorporation of TiB2, the oxidation scale of (TiB2 + TiC)/Ti3SiC2 composites is generally composed of an outer layer of coarse-grained TiO2 and an inner layer of amorphous boron silicate and fine-grained TiO2. Only the dense inner layer formed on the surface acts as a diffusion barrier, retarding the inward diffusion of O, and consequently contributing to the improved oxidation resistance of the (TiB2 + TiC)/Ti3SiC2 composites.  相似文献   

17.
Direct synthesis route was developed to support TiO2–ZrO2 binary metal oxide onto the carbon templated mesoporous silicalite-1 (CS-1). Metal hydroxide modified carbon particles could play a role as hard template and simultaneously support metal components on the mesopores during the crystallization of zeolites. Such supported TiO2–ZrO2 binary metal oxides (TZ/CS-1) showed better resistance to deactivation in the oxidative dehydrogenation of ethylbenzene (ODHEB) in the presence of CO2. These catalysts were found to be active, selective and catalytically stable (10 h of time-on-stream) at 600 °C for the dehydrogenation of ethylbenzene (EB) to styrene (Sty).  相似文献   

18.
In this study, we examine the interaction of N2O with TiO2(1 1 0) in an effort to better understand the conversion of NOx species to N2 over TiO2-based catalysts. The TiO2(1 1 0) surface was chosen as a model system because this material is commonly used as a support and because oxygen vacancies on this surface are perhaps the best available models for the role of electronic defects in catalysis. Annealing TiO2(1 1 0) in vacuum at high temperature (above about 800 K) generates oxygen vacancy sites that are associated with reduced surface cations (Ti3+ sites) and that are easily quantified using temperature programmed desorption (TPD) of water. Using TPD, X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS), we found that the majority of N2O molecules adsorbed at 90 K on TiO2(1 1 0) are weakly held and desorb from the surface at 130 K. However, a small fraction of the N2O molecules exposed to TiO2(1 1 0) at 90 K decompose to N2 via one of two channels, both of which are vacancy-mediated. One channel occurs at 90 K, and results in N2 ejection from the surface and vacancy oxidation. We propose that this channel involves N2O molecules bound at vacancies with the O-end of the molecule in the vacancy. The second channel results from an adsorbed state of N2O that decomposes at 170 K to liberate N2 in the gas phase and deposit oxygen adatoms at non-defect Ti4+ sites. The presence of these O adatoms is clearly evident in subsequent water TPD measurements. We propose that this channel involves N2O molecules that are bound at vacancies with the N-end of the molecule in the vacancy, which permits the O-end of the molecule to interact with an adjacent Ti4+ site. The partitioning between these two channels is roughly 1:1 for adsorption at 90 K, but neither is observed to occur for moderate N2O exposures at temperatures above 200 K. EELS data indicate that vacancies readily transfer charge to N2O at 90 K, and this charge transfer facilitates N2O decomposition. Based on these results, it appears that the decomposition of N2O to N2 requires trapping of the molecule at vacancies and that the lifetime of the N2O–vacancy interaction may be key to the conversion of N2O to N2.  相似文献   

19.
Hydrophilic microporous membranes were prepared based on polypropylene (PP) cast films blended with a commercial acrylic acid grafted polypropylene (PP-g-AA) via melt extrusion followed by grafting titanium dioxide (TiO2) nanoparticles on its surface, annealing and stretching. ATR-FTIR, XPS and EDS analyses showed that the hydrophilic segments of an amphiphilic modifier (PP-g-AA) acted as surface functional groups on the film surface. The results indicated that the presence of the modifier was very important for grafting TiO2 nanoparticles on the film surface. Compared to PP and PP/PP-g-AA blend films, the water contact angle decreased by a factor of 2.5 after grafting TiO2 on the surface of the films, meanwhile the water vapor permeability of the microporous membranes prepared from those films increased by a factor of 1.5. All these results indicated that the hydrophilicity of the modified PP membranes was improved.  相似文献   

20.
Composite ceramics based on (1 − x)Mg2TiO4-xCaTiO3-y wt.% ZnNb2O6 (x = 0.12-0.16, y = 0-8) were prepared by a conventional mixed-oxide route. Zn2+ partially replaced Mg2+ in Mg2TiO4 and formed the spinel-structured (Mg1−δZnδ)2TiO4 phase. Nb2+, is known to be solid soluble in CaTiO3, was found to change its shape from cubic to pliable. A bi-phase system (Mg1−δZnδ)2TiO4 and CaTiO3 exhibited in all samples, where a small amount of second phase Mg1−δZnδTiO3 was also detected. The microwave dielectric properties of specimens were strongly related to ZnNb2O6 and CaTiO3 content. As y increased, ?r and τf decreased, however, Q × f decreased to a minimum value and started to increase thereafter. It was also found that ?r and τf increased and Q × f decreased with increasing x. The optimized microwave dielectric properties with ?r = 18.37, Q × f = 31,027 GHz (at 6 GHz), and τf = 0.51 ppm/°C were achieved for (1 − x)Mg2TiO4-xCaTiO3-y wt.% ZnNb2O6 (x = 0.12, y = 4) sintered at 1360 °C for 6 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号