首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
本文通过采用ARIMA模型(求和自回归滑动平均模型)对嵌入式软件项目开发中缺陷数量的预测方法进行了研究,提出将嵌入式软件项目测试过程中发现的缺陷数量,按时间顺序阶段作为时间序列事件数据,按照ARIMA(p,d,q)模型的方式,对此数据的时间过程进行分析与建模,根据所得模型对下一个相似的软件项目测试发现缺陷数量进行预测的方法。同时采用这种方法对实际项目数据进行了建模,利用所得模型进行了预测,并与实际项目的数据进行了比较,对更深一步的研究进行了讨论。  相似文献   

2.
为了减少二次供水设施给小区供水管网所带来的压力,对供水管网运行状况进行更加精确的预测。结合物联网和时间序列分析等技术,通过对供水管网的历史数据的分析,采用季节性ARIMA模型对供水数据进行预测。设计数据预测分析的步骤和方案,建立方差估值为0.404 9、AIC为284.85的ARIMA(3,0,1)×(1,1,1)24模型。实验结果表明,设计的季节性ARIMA模型的预测周期短且有较高的预测精度,能够有效地对供水管网运行状态进行预测。  相似文献   

3.
《软件》2019,(12):85-89
时序模型作为一种预测方法,在货运量预测、机场客流量预测、疾病发病率预测、空气质量预测等许多重要的领域具有广泛的应用。本文利用大同市2016年1月到2019年8月共44个月的空气质量综合指数数据样本,使用牛顿插值进行了缺失值插补,根据给定的数据序列进行了时序图、自相关图和偏自相关图的构建。然后,进行单位根检验,判断出序列为平稳非白噪声序列。本文使用相对最优模型识别方法确立模型的p、q值,最终建立ARIMA(2,0,1)模型,对2019年9-12月的空气质量综合指数进行预测。通过对模型的分析,判断预测值比较准确。  相似文献   

4.
ARIMA模型在网络流量预测中的应用研究   总被引:9,自引:0,他引:9  
针对网络运行安全和可靠的要求,研究网络流量预测问题.网络流量具有高度自相似、时变性和非线性等时间序列特征,传统预测方法无法捕捉其时变性和自相似规律,导致预测精度比较低.为了提高网络流量的预测精度.在分析网络流量特征的基础上,提出一种基于ARIMA模型的网络流量预测方法.先采用差分法对网络流量原始数据平稳化处理,提取网络流量数据的自相似特征.然后将平稳后的数据利用能很好反映时变性和非线性的ARIMA模型对进行拟合和检验,建立网络流量的最优预测模型,最后根据获得最优预测模型对嗍络流量实例数据进行仿真预测.仿真结果表明,ARIMA模型的网络流量预测精度比其它预测模型要高,能够很好的反映网络流量的规律,在网络流量预测中有广泛应用前景.  相似文献   

5.
6.
通过确定ARIMA模型参数,建立预测中国国内游游客人数的预测模型,为中国未来旅游人数预测提供参考。首先选取1994-2015年的国内游游客人数作为训练数据,判断时间序列是否平稳,若不平稳则进行平稳性处理;然后确定模型参数,建立预测模型;最后按照构建好的ARIMA模型对2016-2018年的国内游游客人数进行预测。实验表明,ARIMA模型能较好地对国内游游客人数进行预测。  相似文献   

7.
8.
研究比较差分自回归移动平均模型(Autoregressive Integrated Moving Average model,简称ARIMA)与长短期记忆神经网络(LongShortTermMemory,LSTM)模型在建筑安全事故预测中的效果。采用2012—2018年全国建筑安全事故快报数据训练ARIMA及LSTM模型,并对全国每年、每月发生的建筑安全事故次数进行预测,使用RMSE和MAE作为评价指标对比两种模型的预测准确率。ARIMA(1,1,0)模型和LSTM模型的RMSE、MAE值分别为8.1318、6.5911和16.4341、14.5534。结果表明,ARIMA模型比LSTM模型更适于预测建筑安全事故发生次数。  相似文献   

9.
 摘要: 近年来,我国一二线城市房价持续上涨,房屋成了人们日常生活讨论的热门话题,大家纷纷对未来的房价走势做出猜测。本文爬取国内某知名大型房产网站自2013年以来广州和深圳的二手房均价数据,采用ARIMA模型对未来的房价进行滚动预测,并使用RMSE对预测精度进行判断。结果表明,该模型可以对二手房均价进行持续预测,且预测精度较高,可为房屋买卖者提供参考。  相似文献   

10.
基于时间序列分析的ARIMA模型分析及预测   总被引:1,自引:0,他引:1  
针对能源合理利用中的负荷预测及理论分析指导等问题,提出了根据时间序列分析的理论方法,建立了ARIMA模型,为能源生产、储备及使用提供了预测理论与方法。仿真实验选取了某地区1997-2006年电力系统月负荷生产实际数据,建立模型并进行了分析和预测。结果表明,所建立模型的分析预测结果是合理和可靠的。  相似文献   

11.
为满足卫生部对三级医院库存周转率的要求,提出一种基于小波变换和相似性度量的线性改进模型。基于滑动窗口的数据流相似性原理检验原始序列,小波分解后,根据其线性特征分别搭建模型分而治之,小波重构综合各分量的预测值得到终值。仿真结果表明,该模型提高了突变节点处的预测精度,在模式和非模式集中有优秀的拟合效果和精准的预测效果,验证了该模型的有效性。  相似文献   

12.
ARIMA模型在农产品价格预测中的应用   总被引:11,自引:0,他引:11       下载免费PDF全文
利用农产品价格时间序列的当前值和过去值准确预报未来值,将有利于正确引导农产品流通和农业生产,实现农产品区域供求平衡,并为政府和农户提供结构调整的依据。针对农产品价格这一重要问题,以白菜月价格数据为例,构建非平稳时间序列ARIMA(p,d,q)模型并预测白菜未来的月价格。结果表明ARIMA(0,1,1)模型能很好地模拟并预测白菜月价格趋势,为农产品市场信息的准确预测提供重要方法。  相似文献   

13.
为在实时电价情况下预测未来24小时电价, 提出一种基于小波变换和差分自回归移动平均(ARIMA)的短期电价混合预测模型。该模型分别根据是否受到需求量影响使用ARIMA模型对多尺度小波变换分解后的时间序列进行预测。同时提出一种电价突变点发现和处理算法。使用澳大利亚新南威尔士州2012年真实数据验证表明, 相对ARIMA预测, 改进后的混合模型在不考虑需求量影响时预测精度更高; 电价突变点发现和处理算法能够准确处理电价异常点, 提高预测精度。  相似文献   

14.
地磁感应电流(GIC)对电网安全运行会带来影响,GIC的分析与预测是近来研究的重点,文中应用ARIMA模型对某一时段内的GIC进行建模分析,挖掘其内在的趋势规律,并运用建立的模型进行短期预测.所建立的模型通过了适应性检验和参数的显著性检验,误差在(8%~21%)范围内,能较好的应用于GIC的预测,为保证电网的安全运行提供理论支持.  相似文献   

15.
党小超  阎林 《计算机工程》2012,38(13):71-74
不同日期同一时刻的网络流量存在相关性和突发性。为准确预测网络流量,提出一种短相关ARIMA模型。对模型定阶后,运用改进的建模方法推导模型参数,使参数随样本数据的变化而更新。实验结果表明,与AR模型和ARIMA模型相比,该模型能更好地描述网络的相关性和自相似性,预测精度较高。  相似文献   

16.
基于ARIMA模型的自动站风速预测   总被引:1,自引:0,他引:1  
对风速预测进行了研究, 提出了基于ARIMA模型的风速预测模型, 为了检验ARIMA模型的有效性, 综合考虑可决系数和AIC(最小信息量)准则, 利用历史150天数据进行ARIMA建模, 对某自动站后一天的风速进行预测, 经过多次仿真计算, 结果表明该方法是有效的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号