首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A remote plasma chemical vapor deposition (RPCVD) of SiO2 was investigated for forming an interface of SiO2/Si at a low temperature below 300°C. A good SiO2/Si interface was formed on Si substrates through decomposition and reaction of SiH4 gas with oxygen radical by confining plasma using mesh plates. The density of interface traps (Dit) was as low as 3.4×1010 cm-2eV-1. N- and p-channel Al-gate poly-Si TFTs were fabricated at 270°C with SiO2 films as a gate oxide formed by RPCVD and laser crystallized poly-crystalline films formed by a pulsed XeCl excimer laser. They showed good characteristics of a low threshold voltage of 1.5 V (n-channel) and -1.5 V (p-channel), and a high carrier mobility of 400 cm2/Vs  相似文献   

2.
A new post-metallization annealing technique was developed to improve the quality of metal-oxide-semiconductor (MOS) devices using SiO 2 films formed by a parallel-plate remote plasma chemical vapor deposition as gate insulators. The quality of the interface between SiO2 and crystalline Si was investigated by capacitance-voltage (C-V) measurements. An H2O vapor annealing at 270°C for 30 min efficiently decreased the interface trap density to 2.0×1010 cm-2 eV-1, and the effective oxide charge density from 1×10 12 to 5×109 cm-2. This annealing process was also applied to the fabrication of Al-gate polycrystalline silicon thin film transistors (poly-Si TFT's) at 270°C. In p-channel poly-Si TFT's, the carrier mobility increased from 60-400 cm2 V-1 s-1 and the threshold voltage decreased from -5.5 to -1.7 V  相似文献   

3.
Electrical characteristics of Al/yttrium oxide (~260 Å)/silicon dioxide (~40 Å)/Si and Al/yttrium oxide (~260 Å)/Si structures are described. The Al/Y2O3/SiO2/Si (MYOS) and Al/Y2 O3/Si (MYS) capacitors show very well-behaved I-V characteristics with leakage current density <10-10 A/cm2 at 5 V. High-frequency C- V and quasistatic C-V characteristics show very little hysteresis for bias ramp rate ranging from 10 to 100 mV/s. The average interface charge density (Qf+Q it) is ~6×1011/cm2 and interface state density Dit is ~1011 cm-2-eV-1 near the middle of the bandgap of silicon. The accumulation capacitance of this dielectric does not show an appreciable frequency dependence for frequencies varying from 10 kHz to 10 MHz. These electrical characteristics and dielectric constant of ~17-20 for yttrium oxide on SiO2/Si make it a variable dielectric for DRAM storage capacitors and for decoupling capacitors for on-chip and off-chip applications  相似文献   

4.
热退火技术是集成电路制造过程中用来改善材料性能的重要手段。系统分析了两种不同的退火条件(氨气氛围和氧气氛围)对TiN/HfO2/SiO2/Si结构中电荷分布的影响,给出了不同退火条件下SiO2/Si和HfO2/SiO2界面的界面电荷密度、HfO2的体电荷密度以及HfO2/SiO2界面的界面偶极子的数值。研究结果表明,在氨气和氧气氛围中退火会使HfO2/SiO2界面的界面电荷密度减小、界面偶极子增加,而SiO2/Si界面的界面电荷密度几乎不受退火影响。最后研究了不同退火氛围对电容平带电压的影响,发现两种不同的退火条件都会导致TiN/HfO2/SiO2/Si电容结构平带电压的正向漂移,基于退火对其电荷分布的影响研究,此正向漂移主要来源于退火导致的HfO2/SiO2界面的界面偶极子的增加。  相似文献   

5.
The authors report that the boron penetration through the thin gate oxide into the Si substrate does not only cause a large threshold voltage shift but also induces a large degradation in the Si/SiO2 interface. An atomically flat Si/SiO2 interface can be easily obtained by using a stacked-amorphous-silicon (SAS) film as the gate structure for p+ poly-Si gate MOS devices even with the annealing temperature as high as 1000°C  相似文献   

6.
Metal-oxide-high-kappa dielectric-oxide-silicon capacitors and transistors are fabricated using HfO2 and Dy2O3 high-kappa dielectrics as the charge storage layer. The programming speed of Al/SiO2/Dy2O3/ SiO2/Si transistor is characterized by a DeltaV th shift of 1.0 V with a programming voltage of 12 V applied for 10 ms. As for retention properties, the Al/SiO2/Dy2O3/ SiO2/Si transistors can keep a DeltaV th window of 0.5 V for 2 times108 s. The corresponding numbers for Al/ SiO2/HfO2/SiO2/Si transistors are 100 ms and 2 times104 s, respectively. The better performance of the Al/SiO2/Dy2O3/ SiO2/Si transistors is attributed to the larger conduction band offset at the Dy2O3/SiO2 interface.  相似文献   

7.
The NH3 plasma passivation has been performed for the first time on the polycrystalline silicon (poly-Si) thin-film transistors (TFT's). It is found that the TFT's after the NH3 plasma passivation achieve better device performances, including the off-current below 0.1 pA/μm and the on/off current ratio higher than 108, and also better hot-carrier reliability as well as thermal stability than the H2-plasma devices. These improvements were attributed to not only the hydrogen passivation of the grain-boundary dangling bonds, but also the nitrogen pile-up at SiO2/poly-Si interface and the strong Si-N bond formation to terminate the dangling bonds at the grain boundaries of the polysilicon films  相似文献   

8.
To ensure the required capacitance for low-power DRAMs (dynamic RAMs) beyond 4 Mb, three kinds of capacitor structures are proposed: (a) poly-Si/SiO2/Ta2O5/SiO2 /poly-Si or poly-Si/Si3N4/Ta2O 5/SiO2/poly-Si (SIS), (b) W/Ta2O5 /SiO2/poly-Si (MIS), and (c) W/Ta2O5 W (MIM). The investigation of time-dependent dielectric breakdown and leakage current characteristics indicates that capacitor dielectrics that have equivalent SiO2 thicknesses of 5, 4, and 3 nm can be applied to 3.3-V operated 16-Mb DRAMs having stacked capacitor cells (STCs) by using SIS, MIS, and MIM structures, respectively, and that 3 and 1.5 nm can be applied to 1.5-V operated 64-Mb DRAMs having STCs by using MIS and MIM structures, respectively. This can be accomplished while maintaining a low enough leakage current for favorable refresh characteristics. In addition, all these capacitors show good heat endurance at 950°C for 30 min. Therefore, these capacitors allow the fabrication of low-power high-density DRAMs beyond 4 Mb using conventional fabrication processes at temperatures up to 950°C. Use of the SIS structure confirms the compatability of the fabrication process of a storage capacitor using Ta2O5 film and the conventional DRAM fabrication processes by successful application to the fabrication process of an experimental memory array with 1.5-μm×3.6-μm stacked-capacitor DRAM cells  相似文献   

9.
This paper presents a study of the impact of gate-oxide N2 O anneal on CMOSFET's characteristics, device reliability and inverter speed at 300 K and 85 K. Two oxide thicknesses (60 and 110 Å) and five N2O anneal conditions (900~950°C, 5~40 min) plus nonnitrided process and channel lengths from 0.2 to 2 μm were studied to establish the correlation between the nitrogen concentration at Si/SiO2 interface and the relative merits of the resultant devices. We concluded that one simple post-oxidation N2O anneal step can increase CMOSFET's lifetime by 4~10 times, effectively suppress boron penetration from the P+ poly-Si gate of P-MOSFET's without sacrificing CMOS inverter speed. We also found that the benefits in terms of the improved interface hardness and charge trapping characteristic still exist at cryogenic temperature. All these improvements are found to be closely correlated to the nitrogen concentration incorporated at the Si/SiO2 interface. The optimal N2O anneal occurs somewhere at around 2% of nitrogen incorporation at Si/SiO2 interface which can be realized by annealing 60~110 Å oxides at 950°C for 5 min or 900°C for 20 min  相似文献   

10.
The low-frequency noise of pMOSFETs fabricated in epitaxial germanium-on-silicon substrates is studied. The gate stack consists of a TiN/TaN metal gate on top of a 1.3-nm equivalent oxide thickness HfO2/SiO2 gate dielectric bilayer. The latter is grown by chemical oxidation of a thin epitaxial silicon film deposited to passivate the germanium surface. It is shown that the spectrum is of the 1/fgamma type, which obeys number fluctuations for intermediate gate voltage overdrives. A correlation between the low-field mobility and the oxide trap density derived from the 1/f noise magnitude and the interface trap density obtained from charge pumping is reported and explained by considering remote Coulomb scattering  相似文献   

11.
We evaluated the TiN/TaN/TiA1 triple-layer to modulate the effective work function (EWF) of a metal gate stack for the n-type metal-oxide-semiconductor (NMOS) devices application by varying the TiN/TaN thickness. In this paper, the effective work function of EWF ranges from 4.22 to 4.56 eV with different thicknesses of TiN and TaN. The thinner TiN and/or thinner in situ TaN capping, the closer to conduction band of silicon the EWF is, which is appropriate for 2-D planar NMOS. Mid-gap work function behavior is observed with thicker TiN, thicker in situ TaN capping, indicating a strong potential candidate of metal gate material for replacement gate processed three-dimensional devices such as FIN shaped field effect transistors. The physical understandings of the sensitivity of EWF to TiN and TaN thickness are proposed. The thicker TiN prevents the A1 diffusion then induces the EWF to shift to mid-gap. However, the TaN plays a different role in effective work function tuning from TiN, due to the Ta-O dipoles formed at the interface between the metal gate and the high-k layer.  相似文献   

12.
1/f noise magnitude in a 15 μm×0.5 μm PMOSFET was remarkably reduced by simply adding a cleaning step using an ammonia hydrogen peroxide mixture (APM) prior to gate oxidation. Gate input-referred noise level for APM-finished PMOSFETs at f=10 Hz was around -128 dBV2/Hz whereas for standard, HF-finished devices, the level was around -114 dBV2/Hz. Flat-band voltages (VFBs) determined by a capacitance-voltage (C-V) measurement were -0.19 V for an APM-finished PMOS and -0.34 V for a HF-finished PMOS. Based on the VFB values, interface state densities were determined to be Nit=3.02×1011 cm-2 for APM-finished PMOS and Nit=6.47×1011 cm-2 for HF-finished PMOS. Lower interface state density obtained by the APM preoxidation cleaning is consistent with the remarkable reduction in the 1/f noise magnitude  相似文献   

13.
High-performance polycrystalline Si (poly-Si) thin-film transistors (TFTs) were successfully fabricated on a glass substrate below 425°C by introducing defect control process technologies. The defects in the laser crystallized poly-Si films were terminated by an oxygen plasma treatment to the film and the defects at the SiO2 /Si interface were controlled by a gate SiO2 film formation using electron cyclotron resonance (ECR) plasma enhanced chemical vapor deposition (PECVD). As a result, high n-channel mobility of 309 cm2V-1s-1, low threshold voltage of 1.12 V and low subthreshold swing of 250 mV/decade were obtained. In addition, it was demonstrated that the defect control process is quite effective to minimize the variation of TFT characteristics  相似文献   

14.
This work proposes a stacked-amorphous-silicon (SAS) film as the gate structure of the p+ poly-Si gate pMOSFET to suppress boron penetration into the thin gate oxide. Due to the stacked structure, a large amount of boron and fluorine piled up at the stacked-Si layer boundaries and at the poly-Si/SiO2 interface during the annealing process, thus the penetration of boron and fluorine into the thin gate oxide is greatly reduced. Although the grain size of the SAS film is smaller than that of the as deposited polysilicon (ADP) film, the boron penetration can be suppressed even when the annealing temperature is higher than 950°C. In addition, the mobile ion contamination can be significantly reduced by using this SAS gate structure. This results in the SAS gate capacitor having a smaller flat-band voltage shift, a less charge trapping and interface state generation rate, and a larger charge-to-breakdown than the ADP gate capacitor. Also the Si/SiO2 interface of the p+ SAS gate capacitor is much smoother than that of the p+ SAS gate capacitor  相似文献   

15.
High mobility polycrystalline Si thin-film transistors (poly-Si TFTs) are firstly fabricated on flexible stainless-steel substrates 100 μm thick through low-temperature processes where both active Si and gate SiO2 films are deposited by glow-discharge sputtering and the Si films are crystallized by KrF excimer laser irradiation. The gate SiO2 films are sputter-deposited in oxygen atmosphere from the SiO2 target. Resulting poly-Si TFTs show excellent characteristics of mobility of 106 cm2/V·s and drain current on-off ratio of as high as 1×106. Thus, the poly-Si TFTs are very promising for realizing novel flat panel displays of lightweight and rugged LCDs and LEDs  相似文献   

16.
A new technology of self-aligned TiN/TiSi2 formation using N2+ implantation during two-step annealing Ti-salicidation process has been developed. The formation of TiN was confirmed by RBS analysis. The leakage currents of n+/p junction diodes fabricated using this technology were measured to investigate the phenomena of Al spiking into Si-substrate. The measured reverse-bias leakage current of diode per unit junction area with Al/TiN/TiSi2 contact is 1.2 nA/cm2 at -5 V, which is less than all of reported data. Also it can sustain the annealing process for 30 min at 500°C. Thus, TiN formed with this technology process is suggested as a very effective barrier layer between TiSi2 and Al for submicron CMOS technology applications  相似文献   

17.
The thermal degradation of the Ta2 O5 capacitor during BPSG reflow has been studied. The cause of deterioration of Ta2O5 with the TiN top electrode was found to be the oxidation of TiN. By placing a poly-Si layer between TiN and BPSG to suppress oxidation, the low leakage current level was maintained after BPSG reflow at 850°C. The Ta2O5 capacitor with the TiN/poly-Si top electrode was integrated into 256-Mbit DRAM cells and excellent leakage current characteristics were obtained  相似文献   

18.
The electrical characteristics of a novel HfTaON/SiO2 gate stack, which consists of a HfTaON film with a dielectric constant of 23 and a 10-Aring SiO2 interfacial layer, have been investigated for advanced CMOS applications. The HfTaON/SiO2 gate stack provided much lower gate leakage current against SiO2 , good interface properties, excellent transistor characteristics, and superior carrier mobility. Compared to HfON/SiO2, improved thermal stability was also observed in the HfTaON/SiO2 gate stack. Moreover, charge-trapping-induced threshold voltage V th instability was examined for the HfTaON/SiO2 and HfON/SiO2 gate stacks. The HfTaON/SiO2 gate stack exhibited significant suppression of the Vth instability compared to the HfON/SiO2, in particular, for nMOSFETs. The excellent performances observed in the HfTaON/SiO2 gate stack indicate that it has the potential to replace conventional SiO2 or SiON as gate dielectric for advanced CMOS applications  相似文献   

19.
We present novel ultrathin (EOT = 2.1 nm) atomic-layer-deposited (ALD) Si-nitride/SiO2 stack gate dielectrics annealed in NH 3 at a moderate temperature of 550°C. MOS capacitors are fabricated using the proposed dielectrics. Excellent performance in electrical stressing experiments is shown by the dielectrics. They also exhibit better interface quality, low bulk-trap density, low trap generation rate, and high long-term reliability in comparison with ALD Si-nitride/SiO2 stack dielectrics without NH3-annealing and conventional thermal SiO2 dielectrics. The proposed stack-gate dielectrics appear to be very promising for ULSI devices  相似文献   

20.
One transistor ferroelectric nonvolatile memory with gate stack of Pt/Pb5Ge3O11/lr/poly-Si/SiO2 /Si was successfully fabricated. This device features a saturated memory window of 3 V at a programming voltage of higher than 3 V from C-V and I-V measurements. The memory window decays rapidly within 10 seconds after programming, but remains stable at 1 V for up to 100 h. The "on" and "off" state currents are greater than 10 μA/μm and less 0.01 pA/μm, respectively, at a drain voltage of 0.1 V  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号