首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five-axis CNC flank machining has been commonly used in the industry for shaping complex geometries. Geometrical errors typically occur in five-axis flank finishing of non-developable surfaces using a cylindrical cutter. Most existing tool path planning methods adjust discrete cutter locations to reduce these errors. An excessive change in the cutter center or axis between consecutive cutter locations may deteriorate the machined surface quality. This study developed a tool path generation method for minimizing geometrical errors on finished surfaces while preserving high-order continuity in the cutter motion. A tool path is described using the moving trajectory of the cutter center and changes in two rotational angles in compact curve representations. An optimization scheme is proposed to search for optimal curve control points and the resulting tool path. A curve subdivision mechanism progressively increases the control points during the search process. Simulation results confirm that the proposed method not only enhances the computational efficiency of tool path generation but also improves the machined surface finish. This study provides a computational approach for precision tool path planning in five-axis CNC flank finishing of ruled surfaces.  相似文献   

2.
A corner-looping based tool path for pocket milling   总被引:1,自引:0,他引:1  
In milling around corners, cutting resistance rises momentarily due to an increase of cutter contact length. NC tool path generation in dealing with sharp corners thus requires special consideration. This paper describes an improved NC tool path pattern for pocket milling. The basic pattern of the improved tool path is a conventional contour-parallel tool path. Bow-like tool path segments are appended to the basic tool path at the corner positions. When reaching a corner, the cutter loops around the appended tool path segments so that corner material is removed progressively in several passes. By using the corner-looping based tool path, cutter contact length can be controlled by adjusting the number of appended tool path loops. The procedures of creating the improved tool path for different corner shapes are explained. The proposed tool path generation was implemented as an add-on user function in a CAD/CAM system. Cutting tests were conducted to demonstrate and verify the significance of the proposed method.  相似文献   

3.
Kinematics of a particular five-axis milling machine can drastically change the machining accuracy. Therefore, the reduction of the kinematics error is an important problem associated with the tool path planning.Our new optimization method employs a closed form of the kinematics error represented as a function of the positions of the cutter contact points. The closed form is derived from the inverse kinematics associated with a particular five-axis machine and obtained through automatic symbolic calculations.The second component of the algorithm is the optimal setup of the part surface on the mounting table employed in an iterative loop with the generation of the cutter contact points.For a prescribed tolerance the proposed optimization allows for substantial reduction in the number of required cutter contact points. The reduction can be significant and may amount to long hours of machining if the machining time at the programmed feed is less than the sampling time of the controller.In turn, when the number of cutter location points is fixed, the error can be substantially reduced. However, this refers to commanded error wherein the dynamics of machine tool are not taken into account.We present an analysis, systematic numerical experiments and results of real cutting (ball nose and flat-end cutters) as an evidence of the efficiency and the accuracy increase produced by the proposed method. We also evaluate the relative contributions of the setup and the point optimization.The method is shown to work with advanced tool path generation techniques proposed earlier such as the adaptive space filling curves.The numerical and machining experiments demonstrate that the proposed procedure outperforms tool paths based on the equi-arclength principle and paths generated by MasterCam 9.  相似文献   

4.
This paper presents a new grid generation method for tool path planning for five-axis machining based on minimization of the kinematics error. First, the procedure constructs a space-filling curve so that the scallops between the resulting tracks of the tool do not exceed a prescribed tolerance. At the second stage (which is the subject of this paper) a one-dimensional grid along the space-filling curve is generated using direct minimization of the kinematics error. A closed form representation of the kinematics error as a function of locations cutter contact points is derived from the inverse kinematics transformations associated with a particular five-axis machine and obtained through automatic symbolic calculations. The grid of cutter location points is generated so that it minimizes the kinematics error. Numerical and cutting experiments demonstrate that the proposed procedure outperforms distribution of points based on the equi-arc-length principle. Finally, we show that our optimization routine requires less points than that based on sequential point insertion and numerical evaluation of the cost function, such as bisection.  相似文献   

5.
This paper presents a machining potential field (MPF) method to generate tool paths for multi-axis sculptured surface machining. A machining potential field is constructed by considering both the part geometry and the cutter geometry to represent the machining-oriented information on the part surface for machining planning. The largest feasible machining strip width and the optimal cutting direction at a surface point can be found on the constructed machining potential field. The tool paths can be generated by following the optimal cutting direction. Compared to the traditional iso-parametric and iso-planar path generation methods, the generated MPF multi-axis tool paths can achieve better surface finish with shorter machining time. Feasible cutter sizes and cutter orientations can also be determined by using the MPF method. The developed techniques can be used to automate the multi-axis tool path generation and to improve the machining efficiency of sculptured surface machining.  相似文献   

6.
This article presents a method of generating iso-planar piecewise linear NC tool paths for three-axis surface machining using ball-end milling directly from discrete measured data points. Unlike the existing tool path generation methods for discrete points, both the machining error and the machined surface finish are explicitly considered and evaluated in the present work. The primary direction of the generated iso-planar tool paths is derived from the projected boundary of the discrete points. A projected cutter location net (CL-net) is then created, which groups the data points according to the intended machining error and surface finish requirements. The machining error of an individual data point is evaluated within its bounding CL-net cell from the adjacent tool swept surfaces of the ball-end mill. The positions of the CL-net nodes can thus be optimized and established sequentially by minimizing the machining error of each CL-net cell. Since the linear edges of adjacent CL-net cells are in general not perfectly aligned, weighted averages of the associated CL-net nodes are employed as the CL points for machining. As a final step, the redundant segments on the CL paths are trimmed to reduce machining time. The validity of the tool path generation method has been examined by using both simulated and experimentally measured data points.  相似文献   

7.
This paper studies optimization of tool path planning in 5-axis flank milling of ruled surfaces using advanced Particle Swarm Optimization (PSO) methods with machining error as an objective. We enlarge the solution space in the optimization by relaxing the constraint imposed by previous studies that the cutter must make contact with the boundary curves. Advanced Particle Swarm Optimization (APSO) and Fully Informed Particle Swarm Optimization (FIPS) algorithms are applied to improve the quality of optimal solutions and search efficiency. Test surfaces are constructed by systematic variations of three surface properties, cutter radius, and the number of cutter locations comprising a tool path. Test results show that FIPS is most effective in reducing the error in all the trials, while PSO performs best when the number of cutter locations is very low. This research improves tool path planning in 5-axis flank milling by producing smaller machining errors compared to past works. It also provides insightful findings in PSO based optimization of the tool path planning.  相似文献   

8.
针对截平面法规划的三角网格表面的刀轨长度较长、加工表面残留高度不均匀的问题,提出一种基于改进截平面法的等残留高度刀轨生成算法.首先在估算刀触点轨迹线垂直方向曲率半径的基础上,计算刀触点轨迹投影线并对其进行修正,去除其中冗余的投影点;然后由修正后的刀触点轨迹投影线构造驱动表面,利用驱动表面和网格表面迭代计算刀触点轨迹线;最后由刀触点轨迹线计算无干涉刀轨.与截平面法生成的刀轨进行比较分析的结果表明,文中算法生成的刀轨长度较小且获得的残留高度保持均匀,适合于三角网格表面表示的复杂表面的精加工.  相似文献   

9.
This paper investigates tool path planning for 5-axis flank milling of ruled surfaces in consideration of CNC linear interpolation. Simulation analyses for machining error show insights into the tool motion that generates a precision machined surface. Contradicting to previous thoughts, the resultant tool path does not necessarily produce minimal machining error when the cutter contacts the rulings of a developable surface. This effect becomes more significant as the distance between two cutter locations is increased. An optimizing approach that adjusts the tool position locally may not produce minimal error as far as the entire surface is concerned. The optimal tool path computed by a global search scheme based on dynamic programming supports this argument. A flank milling experiment and CMM measurement further validate the findings of this work.  相似文献   

10.
A new tool path generation method of flank milling considering constraints is proposed for ball-end cutters in this paper. It will not only reduce the machining error range but also meet the following two constraints: (a) The ball end of the milling tool is tangential to the constraint surface; (b) There is no overcut and the minimum error is zero, which is called nonnegative-error constraint. The two constraints are very useful in some situations of engineering applications, such as flank milling impeller blades. Based on the proposed method, two types of cutter will be used to generate tool paths for the same designed surface and constraint surface. The effectiveness and accuracy of the proposed method will be finally proved with some examples.  相似文献   

11.
Presented in this paper is a tool path generation method for multi-axis machining of free-form surfaces using Bézier curves and surfaces. The tool path generation includes two core steps. First is the forward-step function that determines the maximum distance, called forward step, between two cutter contact (CC) points with a given tolerance. The second component is the side step function which determines the maximum distance, called side step, between two adjacent tool paths with a given scallop height. Using the Bézier curves and surfaces, we generate cutter contact (CC) points for free-form surfaces and cutter location (CL) data files for post processing. Several parts are machined using a multi-axis milling machine. As part of the validation process, the tool paths generated from Bézier curves and surfaces are analyzed to compare the machined part and the desired part.  相似文献   

12.
In freeform surface finishing, there are three major types of tool path topologies: the direction-parallel type, the contour–parallel type and the space-filling curve (SFC) type. The SFC topology is capable of covering the whole surface with only one path. In this paper, we present a new way of planning the SFC type tool path by formulating the planning task as a traveling salesman problem (TSP). The optimal path is generated in two steps. Firstly, a set of regular cutter contact (CC) points is generated on the input surface. A cutting simulation method is developed to evaluate the scallop error and determine the position of the next CC point in cross-feed direction. This method is free of local surface curvature assumptions and is therefore accurate for big cutters. Secondly, the obtained CC points are input into an efficient TSP solver LHK for the optimal CC point linking sequences. To stop the CC points from diagonal linking or penetrating linking, the Euclidean distance evaluation function for two CC points is redefined in LHK. The proposed tool path generation method is verified with several freeform surface examples; the results show that the method can automatically find the optimal feed direction and it can generate shorter tool path than the traditional SFC method. The feasibility of the proposed method is also verified by a cutting experiment.  相似文献   

13.
By representing the swept envelope of a generic rotary cutter as a sphere-swept surface, our previous work on distance function based tool path optimization is extended to develop the model and algorithm for simultaneous optimization of the tool path and shape for five-axis flank milling. If the tool path is fixed, a novel tool shape optimization method is obtained. If the tool shape is fixed, a tool path optimization method applicable to any rotary cutter is obtained. The approach applies to non-ruled surfaces, and also finds applications in cutter dimension optimization and flank millable surface design. Numerical examples are given to confirm its validity.  相似文献   

14.
Due to the complexity of geometry, the feed direction with maximal machining strip width usually varies among different regions over a freeform surface or a shell of surfaces. However, in most traditional tool path generation methods, the surface is treated as one machining region thus only local optimisation might be achieved. This paper presents a new region-based tool path generation method. To achieve the full effect of the optimal feed direction, a surface is divided into several sub-surface regions before tool path computation. Different from the scalar field representation of the machining strip width, a rank-two tensor field is derived to evaluate the machining strip width using ball end mill. The continuous tensor field is able to represent the machining strip widths in all feed directions at each cutter contact point, except at the boundaries between sub-regions. Critical points where the tensor field is discontinuous are defined and classified. By applying critical points in the freeform surface as the start for constructing inside boundaries, the surface could be accurately divided to such that each region contain continuous distribution of feed directions with maximal machining strip width. As a result, tool paths are generated in each sub-surface separately to achieve better machining efficiency. The proposed method was tested using two freeform surfaces and the comparison to several leading existing tool path generation methods is also provided.  相似文献   

15.
曲面数控加工中面向NURBS刀具路径生成的刀位点分段算法   总被引:1,自引:0,他引:1  
曲面数控加工中,NURBS刀具路径生成技术需要在大量有序刀位点中提取适合于NURBS刀具路径表示的刀位点段,刀位点的分段质量是决定NURBS刀具路径生成的前提.通过分析NURBS刀具路径的特点,对由刀位点表示的刀具路径之间的连接方式和边界点进行分类,提出通过层次聚类法将刀具路径进行分段的算法.在此基础上,通过判断连接点的类型来提取合适的刀位点段以进行NURBS刀具路径的生成.实例结果表明,该算法分段可靠、快捷,对不同曲线曲面轮廓刀具轨迹点进行分段的适应性强,分段结果可以满足NURBS刀具路径的生成.  相似文献   

16.
NC machining of a nonzero genus triangular mesh surface is being more widely confronted than before in the manufacturing field. At present, due to the complexity of geometry computation related to tool path generation, only one path pattern of iso-planar type is adopted in real machining of such surface. To improve significantly 5-axis machining of the nonzero genus mesh surface, it is necessary to develop a more efficient and robust tool path generation method. In this paper, a new method of generating spiral or contour-parallel tool path is proposed, which is inspired by the cylindrical helix or circle which are a set of parallel lines on the rectangular region obtained by unwrapping the cylinder. According to this idea, the effective data structure and algorithm are first designed to transform a nonzero genus surface into a genus-0 surface such that the conformal map method can be used to build the bidirectional mapping between the genus-0 surface and the rectangular region. In this rectangular region, the issues of spiral or contour-parallel tool path generation fall into the category of simple straight path planning. Accordingly, the formula for calculating the parameter increment for the guide line is derived by the difference scheme on the mesh surface and an accuracy improvement method is proposed based on the edge curve interpolation for determining the cutter contact (CC) point. These guarantee that the generated tool path can meet nicely the machining requirement. To improve further the kinematic and dynamic performance of 5-axis machine tool, a method for optimizing tool orientation is also preliminarily investigated. Finally, the experiments are performed to demonstrate the proposed method and show that it can generate nicely the spiral tool path or contour-parallel tool path on the nonzero genus mesh surface and also can guarantee the smooth change of tool orientation.  相似文献   

17.
The authors have recently developed methods for cutter orientation and tool path generation in 5-axis sculptured surface machining, where the design surface is approximated locally by a quadric. This paper presents, from a purely geometric perspective, the fundamental theory for optimising the cutter orientation on a quadric, which maximises the machined strip width whilst avoiding local and rear gouging. The analysis focuses on the flat-end cutter which is modelled by a circular cylinder but can be generalised for any fillet-end cutter using an appropriate offset of the design surface and the concept of geometric equivalency. The theory is illustrated by three examples.  相似文献   

18.
This paper presents a global optimization method to generate a tool path for flank milling free-form surfaces with a generic cutter based on approximation using the tool envelope surface. It is an extension of our previous work [Gong Hu, Cao Li-Xin, Liu Jian. Improved positioning of cylindrical cutter for flank milling ruled surfaces. Computer Aided Design 2005; 37:1205–13]. First, given initial tool path or tool axis trajectory surface, the grazing points of the tool envelope surface can be calculated. Second, the errors between the tool envelope surface and the designed surface along the normal direction of the tool envelope surface are calculated. Based on this new definition of error, an optimization model is established to get the global optimized tool axis trajectory surface. In order to simplify the calculation, two variants of this method based on the least square criterion are proposed to solve this model. Since this method is really based on the tool envelope surface, it can reduce the initial machining errors effectively. The proposed method can be used not only for cylindrical cutters and conical cutters, but also for generic cutters with a surface of revolution. In addition to ruled surfaces, it also can be used for machining non-ruled surfaces. Finally, several examples are given to prove its effectiveness and accuracy. The generated tool paths and calculated grazing points for test are available in supplementary files for the readers’ convenience in verifying this work in different CAD/CAM systems.  相似文献   

19.
以误差补偿技术的网络化应用为目的展开研究,选取SMART-CNC数控曲面磨床为研究对象,运用多体理论,建立了磨床的运动模型,获得了与精密刀具轨迹相对应的逆变刀具路线或逆变数控指令的求解方法,在此基础开发了基于网络的误差补偿软件,构建了网络化误差补偿服务系统。仿真试验结果从理论上证明了本文建模方法的正确性和网络化应用方案的可行性。  相似文献   

20.
Analytical estimation of error in flank milling of ruled surfaces   总被引:1,自引:0,他引:1  
This article introduces a method to estimate geometric error during flank milling of a ruled surface. The various positioning schemes developed by researchers are intended to reduce this geometric error in order to mill with larger sized milling cutters while respecting the tolerance interval. There are two trends in positioning: either positioning is simple and right from the start it is easy to determine design of the maximum allowed milling cutter radius, or positioning is complex and determination of the maximum milling cutter dimensions can only be conducted after digital calculations of the error. It will then be necessary to choose another milling cutter radius and recommence the positioning procedure and error calculation in order to validate the tool. In the present study, a method to estimate error in the scope of complex positioning is presented. The aim is to be capable of choosing a maximum cutting tool radius that respects the tolerance interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号