首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using the industrial wastewater from a dairy plant, the performance of enhanced biological phosphorus removal (EBPR) with complex organic substances was evaluated. A laboratory-scale sequencing batch reactor (SBR) was operated and the organic loading rate in total chemical oxygen demand (tCOD) increased gradually from 200–600?g-tCOD?m?3?cycle?1 in three steps. As the organic loading increased, the food to microorganism ratio (F/M) increased from 0.16–0.27 (g-tCOD/g-MLVSS d). When it increased over 600?g-tCOD?m?3?cycle?1, the effluent phosphorus concentration fluctuated, showing an unstable EBPR activity. During the anaerobic condition, higher fraction of poly-3-hydroxyvalerate (PHV) was observed and the ratio of PHV to poly-3-hydroxybuyrate (PHB) production (ΔPHV/ΔPHB) ranged 1.2 ~ 3.4?mM-C/mM-C. PHV was produced faster and used later than PHB. By applying fluorescent in situ hybridization (FISH) technique, the percentage of Rhodocyclus-related bacteria to the total cell counts was monitored as an indicator of phosphorus accumulating organisms (PAOs). The population accounted for 38.3±16.2% at low organic loading rate and stayed at the same level as the organic loading rate increased.  相似文献   

2.
A laboratory-scale sequencing batch reactor was operated and the dynamics of Rhodocyclus-related phosphorus-accumulating organisms (PAOs) population was monitored. After the system reached a steady state and showed a stable enhanced biological phosphorus removal status, the organic loading rate was increased from 160 to 1,020?g?COD?m?3?cycle?1 in five steps. When the P storage capacity reached maximum at 330?g?COD?m?3?cycle?1, the system lost the stability and the effluent phosphorus concentration fluctuated. As the organic loading rate increased from 160 to 1,020?g?COD?m?3?cycle?1, the PAO population decreased from 83.8±4.9 to 32.2±16.2% and internal polyphosphate content decreased from 0.20 to 0.03?mg?P?mg?VSS?1. Phosphate-accumulating metabolism was weakened as the organic loading rate increased and PAO population decreased concomitantly, whereas glycogen-accumulating metabolism increased at high organic loading rates as supported by the increased intracellular glycogen content and production of a higher fraction of intracellular poly-β-hydroxyl valerate.  相似文献   

3.
The suitability of the anaerobic/aerobic process was investigated for treating phosphorus-deficient wastewaters with highly variable influent chemical oxygen demand (COD) loading patterns to produce consistently low effluent P levels. During laboratory-scale experiments, two sequencing batch reactors (SBRs), one anaerobic/aerobic (AnA) and the other completely aerobic (CA), received transient influent COD loading patterns that simulated (No. 1) daily COD loading fluctuations and (No. 2) low weekend COD loading, each for a period of approximately 6?months. The AnA SBR produced lower effluent soluble P concentrations than the CA SBR during loading pattern No. 1 (0.5 versus 1.2?mgP/L). During loading pattern No. 2, both SBRs allowed effluent acetate breakthrough, following the low weekend COD loading period, and the P removal in the AnA SBR gradually deteriorated. The AnA process has the potential to produce lower effluent P levels than the CA process during transient loading periods due to the P release and uptake characteristics associated with the polyphosphate-accumulating metabolism. Extended periods of low COD loading can however cause a loss of P removal.  相似文献   

4.
The leachate from a Hong Kong landfill, containing 15,700 mg∕L of chemical oxygen demand (COD) and 2,260 mg∕L of ammonia nitrogen (NH3–N), was first treated in a UASB (upflow anaerobic sludge blanket) reactor at 37°C. The process on average removed 90.4% of COD with 6.6 days of hydraulic retention at an organic loading rate of 2.37 g of COD∕L?day. The UASB effluent was further treated by the Fenton coagulation process using H2O2 and Fe2+. Under the optimal condition of 200 mg of H2O2∕L and 300 mg of Fe2+∕L and an initial pH of 6.0, 70% of residual COD in the UASB effluent was removed, of which 56% was removed by coagulation∕precipitation and only 14% by free radical oxidation. It is obvious that H2O2 and Fe2+ had a strong synergistic effect on coagulation. The average COD in the final effluent was 447 mg∕L. Removing each gram of COD required 0.28 g of Fe2+ and 0.18 g of H2O2.  相似文献   

5.
This study investigated the potential of four full-scale oxidation ditches to accomplish enhanced biological phosphorus removal (EBPR). Despite the fact that none of the tested oxidation ditches were designed to perform EBPR, mixed liquors from all four ditches showed good specific phosphorus release and uptake rates, a typical characteristic of a typical EBPR biomass. The specific phosphorus release rates ranged from 0.042- to 0.254-mg P/mg VSS-d and the specific phosphorus uptake rates ranged from 0.023- to 0.125-mg P/mg VSS-d for the tested full-scale plants. The EBPR potential of one of the full-scale plants (Central Davis Sewer District) was further studied by changing the aeration patterns in the ditch. The mixed liquor in this full-scale plant exhibited good phosphorus release and uptake trends and dissolved phosphorus, as low as 1.26 mg/L, could be accomplished in the final effluent of this plant as a result of this optimization. The long-term feasibility of the EBPR in this full-scale was tested by running a bench-scale EBPR reactor, in which the anaerobic phase was replaced with aerated-anaerobic phase to simulate the mixed liquor environment that exists in Central Davis mixed liquor and, in general, in all oxidation-ditch-type activated sludge configurations. The bench-scale reactor showed consistent EBPR activity in the absence of an anaerobic environment and more than 85% phosphorus removal could be maintained in the reactor for more than 400 days. The intrafloc microanaerobic/anoxic zones, which may be present in the mixed liquor, did not seem to add to the EBPR efficiency under aerated-anaerobic conditions. Cloning and sequencing using Rhodocyclus specific forward primer RHC439 showed the abundance of organisms most closely falling in Rhodocyclaceae family but not related to Candidatus Accumulibacter phosphatis. Simultaneous 4′-6–Diamidino-2–phenylindole (DAPI) staining and fluorescent in situ hybridization (FISH) using RHC439 probe clearly demonstrated the participation of polyphosphate accumulating organism (PAOs) targeted by RHC439 (i.e., in Rhodocyclaceae family). Microautoradiography assisted FISH using RHC439 further confirmed the participation of PAOs in Rhodocyclaceae family.  相似文献   

6.
Anaerobic degradation of phenol mixed with a readily degradable synthetic wastewater (DSWW) as a cosubstrate was studied in a 12?L upflow anaerobic sludge blanket reactor at 30±2°C over a period of 632?days. DSWW was prepared by diluting sugar cane based molasses. The biomass was acclimatized to high phenol concentration by gradually decreasing the DSWW chemical oxygen demand (COD) of 4,000?mg/L. Feed made up of phenol COD and DSWW COD in the ratio of 7:3 (phenol concentration = 1,176?mg/L) was successfully treated at a hydraulic retention time (HRT) of 12?h and organic loading rate (OLR) of 8?g?COD/L?day. Phenol removal ranged from 99.9 to 84% at phenol COD varying from 10 to 70% in the feed. During the entire operation, COD removal varied from about 74 to 91.3%. The influent COD was distributed into CH4–COD ( ~ 72%), effluent COD ( ~ 17%), and sludge and unaccounted COD ( ~ 11%). The process failure occurred at 4:1 phenol COD: DSWW COD. Specific methanogenic activity of granular sludge exhibited uniform activity up to phenol COD of 70%. The performance of the reactor could not be maintained beyond 70% phenol COD even by reducing the sludge loading rate, increasing HRT, or decreasing OLR.  相似文献   

7.
An SBR (sequencing batch reactor) system was evaluated for nutrient removal. The system is capable of removing 95% of influent PO3?4, or from 6.7 to 0.4 mg P∕L, with the addition of acetate of 120–150 mg COD∕L in the feed solution (primary effluent). Nitrification was also achieved within the preset aeration cycle time in reducing the effluent ammonia level from 16.3–19.8 mg N∕L to 0.2–0.3 mg N∕L. However, denitrification was incomplete due to a slower endogenous nitrate respiration rate in the idle period, resulting in an effluent nitrate level of 7–8 mg N∕L. A linear version of the ASM2 (Activated Sludge Model No. 2) was developed to model the performance of an SBR system for nutrient removal. The developed model appropriately predicts the dynamic behavior of the SBR system with respect to phosphate release∕uptake, nitrification, ammonification, and denitrification. Compared with the full ASM2, the calibration of model parameters and model simulation require less computational time for practical implementation of the linear model into a process control system for the SBR.  相似文献   

8.
The use of a combined anaerobic fluidized bed and zeolite fixed bed system in sanitary landfill leachate treatment was investigated. Anaerobic treatability studies were successfully performed in the anaerobic fluidized bed reactor. The chemical oxygen demand (COD) removal was attained up to 90% with increasing organic loading rates as high as 18?g?COD/L?day after 80?days of operation. Good biogas production yield (Ygas) of 0.53?L biogas per gram removed COD with methane (CH4) content of 75% was obtained. The attached biomass concentration increased along the column height from bottom to top, and its mean value was found 6,065?mg/L after 100?days of operation. The anaerobically treated landfill leachate was further treated by a zeolite fixed bed reactor. While excellent ammonia removal (>90%) was obtained with the untreated zeolite, the regenerated zeolites showed higher performance. Consequently, this combined anaerobic and adsorption system is an effective tool to remove high COD and high ammonia in landfill leachate.  相似文献   

9.
The performance of a sequencing batch biofilter integrating anaerobic/aerobic conditions in one tank to treat a pharmaceutical wastewater effluent was studied. A pilot reactor, packed with a porous volcanic stone (puzzolane) was used in the study. The reactor operated as a sequencing batch biofilter, SBB, with reaction times varying for the anaerobic stage from 8 to 24 h and for the aerobic one from 4 to 12 h. The volume of exchange was from 16 to 88%. The pharmaceutical wastewater contained organic chemicals including phenols and o-nitroaniline, a concentration of organic matter that varied from 28,400 to 72,200 mg/L (as total COD), 280 to 605 mg N-NH4/L. and 430 to 650 mg SST/L. In order to acclimatize the microorganisms to the industrial wastewater, the organic load was increased stepwise from 1 to 7.7 kg COD/m3/d. The adequate time was obtained when the removal efficiency of COD reached 80%, or more. Maximal removal loads, associated to high removal efficiencies (95-97% as COD), varied from 4.6 to 5.7 kg COD/m3/d. Under these conditions color removal was 80% as Pt-Co units. Microtox analysis was performed to the wastewater and to the anaerobic and aerobic stages. It was observed that the aerobic stage was the responsible for wastewater detoxification. Results showed that the anaerobic/aerobic SBB was able to treat efficiently initial concentrations of the raw effluent up to 28,400 mg COD/L.  相似文献   

10.
A combined system composed of three sequentially arranged reactors, anaerobic-anoxic-aerobic reactors, was used to treat the wastewater generated in the tuna cookers of a fish canning factory. These wastewaters are characterized by high chemical oxygen demand (COD) and nitrogen concentrations. The anaerobic process was performed in an upflow anaerobic sludge blanket reactor operated in two steps. During Step I different influent COD concentrations were applied and organic loading rates (OLRs) up to 4 g COD/(L?d) were achieved. During Step II hydraulic retention time (HRT) was varied from 0.5 to 0.8 days while COD concentration in the influent was constant at 6 g COD/L. The OLRs treated were up to 15 g COD/(L?d). When HRTs longer than 0.8 days were used, COD removal percentages of 60% were obtained and these values decreased to 40% for a HRT of 0.5 days. The denitrification process carried out in an upflow anoxic filter was clearly influenced by the amount of carbon source supplied. When available carbon was present, the necessary COD/N ratio for complete denitrification was around 4 and denitrification percentages of 80% were obtained. The nitrification process was successful and was almost unaffected by the presence of organic carbon (0.2–0.8 g TOC/L), with ammonia removal percentages of 100%. Three recycling ratios (R/F) between the denitrification and nitrification reactors were applied at 1, 2, and 2.5. The overall balance of the combined system indicated that COD and N removal percentages of 90% and up to 60%, respectively, were achieved when the R/F ratio was between 2 and 2.5.  相似文献   

11.
The biodegradation of propylene glycol (PG) and PG-based aircraft deicing fluid (ADF) at initial concentrations of 400–100,000?mg/L was investigated in saturated sand columns operated under nitrogen-limited conditions that are expected occur in the environment. PG biodegradation resulted in the accumulation of 0.4–1.4?mg volatile solids/g sand, which decreased the hydraulic conductivity of the sand by 23–99.8%. At loading up to 0.27?mg ADF or PG/g sand/d, greater than 99% PG removal and 88% soluble chemical oxygen demand (COD) removal were achieved. At higher loading, removal efficiency decreased but the removal rate increased to 11.2?mg?PG/g sand/day and up to 10.7?mg COD/g sand/day. As ADF or PG loading increased causing more nitrogen-limited conditions and likely a greater amount of PG fermentation, cell yields decreased and a greater fraction of incomplete mineralization of the ADF and PG were noted as measured by higher residual soluble COD. The results indicate that natural attenuation of PG in groundwater is likely to occur in association with potentially significant bioclogging.  相似文献   

12.
A pilot-scale liquid-solid circulating fluidized bed (LSCFB) bioreactor was employed for biological nutrient removal from municipal wastewater at the Adelaide Pollution Control Plant, London, Ontario, Canada. Lava rock particles of 600?μm were used as a biomass carrier media. The system generated effluent characterized by <1.0?mg NH4–N/L, <6.0?mg NO3–N/L, <1.0?mg PO4–P/L, <10?mg TN/L, and <10?mg SBOD/L at an influent flow of 5?m3/d, without adding any chemicals for phosphorus removal and secondary clarification for suspended solids removal. The impact of the dynamic loading on the LSCFB effluent quality and its nutrient removal efficiencies were monitored by simulating wet weather condition at a maximum peaking factor of 3 for 4 h. The achievability of effluent characteristics of 1.1 mg NH4–N/L, 4.6 mg NO3–N/L, 37 mg COD/L, and 0.5 mg PO4–P/L after 24 h of the dynamic loading emphasize the favorable response of the LSCFB to the dynamic loadings and the sustainability of performance without loss of nutrient removal capacity.  相似文献   

13.
Using a linear model, an optimization scheme for a sequencing batch reactor (SBR) system for phosphorus removal was investigated. The objective was to minimize energy consumption by reducing the aeration cycle time (tair), while meeting the permit requirement (monthly average PO3?4 of 0.5 mg P∕L). Based on the model prediction and error feedback information, the proposed scheme controlled the SBR system well both in the simulation and the real application by adjusting the tair to meet the effluent PO3?4 constraint. Mismatch between the model prediction and the measured data was compensated for. In the simulation, the average aeration cycle time was calculated to be 2.8 h, while in the real system it was 3.5 h. The actual optimized system provided excellent removal of phosphorus, COD, and ammonia with efficiencies of 93% (7.4 to 0.5 mg P∕L), 90% (420 to 43 mg COD∕L), and 98% (22.1 to 0.4 mg N∕L), respectively. However, the effluent nitrate concentrations were relatively high (10 mg N∕L), due to a slower endogenous nitrate respiration rate.  相似文献   

14.
以江西某厂铼生产过程中产生的难降解萃取有机废液为研究对象,采用吸附-絮凝法去除企业萃取废液中难降解的化学需氧量(COD)。每100 mL该废液加入5 mL浓度为5%的聚合氯化铝(PAC)溶液和0.5 g炭粉搅拌15 min,再加入1 mL浓度为0.3%的聚丙烯酰胺(PAM)溶液,抽滤后,COD可从1368 mg/L降至200 mg/L,废液COD去除率为85.38%。研究结果表明,该方法可大幅提高难降解有机废水中COD的去除率,保证现有污水处理后续工序水质的COD稳定,减轻企业环保压力,降低运行成本。  相似文献   

15.
Phosphate concentration microprofiles were measured within activated sludge flocs in the enhanced biological phosphate removal (EBPR) process, and a fluorescent in situ hybridization and clone library analysis were conducted to indentify polyphosphate accumulating organisms (PAOs). The center of the flocs had the highest phosphate concentrations, and the stratification of the flocs found by microprofiling indicated that the PAOs were probably distributed evenly throughout the flocs. Under the assumption that the phosphate, which was generated because of phosphate release by microbial activity, was not consumed by microbes and was only transferred from the flocs to the bulk by diffusion during anaerobic conditions, the effective diffusion coefficient (Df) for phosphate release within the flocs was calculated to be 3.33×10?7?cm2/s at the end of the anaerobic phase of the EBPR process. These results provide a better understanding of the phosphate removal mechanism, and this understanding of the internal function of flocs can lead to improvement in the modeling, design, and operation of the biological phosphorus removal process.  相似文献   

16.
Feasibility of the upflow anaerobic sludge blanket (UASB) process was investigated for the treatment of tapioca starch industry wastewater. After removal of suspended solids by simple gravity settling, starch wastewater was used as a feed. Start-up of a 21.5-L reactor with diluted feed of approximately 3,000 mg∕L chemical oxygen demand (COD) was accomplished in about 6 weeks using seed sludge from an anaerobic pond treating tapioca starch wastewater. By the end of the start-up period, gas productivity of 4–5 m3/m3r?day was obtained. Undiluted supernatant wastewater with a COD concentration of 12,000–24,000 mg∕L was fed during steady-state reactor operation at an organic loading rate of 10–16 kg COD/m3r?day. The upflow velocity was maintained at 0.5 m∕h with a recirculation ratio of 4:1. COD conversion efficiencies >95% and gas productivity of 5–8 m3/m3r?day were obtained. These results indicated that removal of starch solids from wastewater by simple gravity settling was sufficient to obtain satisfactory performance of the UASB process.  相似文献   

17.
Anaerobic and aerobic treatment of high-strength pharmaceutical wastewater was evaluated in this study. A batch test was performed to study the biodegradability of the wastewater, and the result indicated that a combination anaerobic-aerobic treatment system was effective in removing organic matter from the high-strength pharmaceutical wastewater. Based on the batch test, a pilot-scale system composed of an anaerobic baffled reactor followed by a biofilm airlift suspension reactor was designed. At a stable operational period, effluent chemical oxygen demand (COD) from the anaerobic baffled reactor ranged from 1,432 to 2,397?mg/L at a hydraulic retention time (HRT) of 1.25 day, and 979 to 1,749?mg/L at an HRT of 2.5 day, respectively, when influent COD ranged from 9,736 to 19,862?mg/L. As a result, effluent COD of the biofilm airlift suspension reactor varied between 256 and 355?mg/L at HRTs of from 5.0 to 12.5 h. The antibiotics ampicillin and aureomycin, with influent concentrations of 3.2 and 1.0?mg/L, respectively, could be partially degraded in the anaerobic baffled reactor: ampicillin and aureomycin removal efficiencies were 16.4 and 25.9% with an HRT of 1.25 day, and 42.1 and 31.3% with HRT of 2.5 day, respectively. Although effective in COD removal, the biofilm airlift suspension reactor did not display significant antibiotic removal, and the removal efficiencies of the two antibiotics were less than 10%.  相似文献   

18.
针对德兴铜矿浮选废水中存在大量浮选药剂,废水COD高的特点,研究采用PAC、PFS以及PAM对浮选废水进行混凝预处理,分别进行了混凝药剂投加浓度和最佳pH值试验,试验结果表明:通过混凝法处理浮选废水中的残留药剂存在一定困难,采用PFS浓度300 mg/L与PAM浓度0.5 mg/L所组成的复合药剂,在pH值为8.0,废水的COD最大去除率达到32.4%。  相似文献   

19.
In this study, a suspended growth sequencing batch reactor (SBR) and an attached cum suspended growth SBR were used to investigate the performance characteristics of nitrogen and phosphorus (NP) removal from municipal sewage. The effects of three controlling factors, namely batch loading rate, feed pattern (initial feed or step feed), and mixing/aeration ratio, on NP removal were investigated under nine different experimental conditions. Owing to a large number of possible combinations among the controlling factors and different experimental conditions, it is very difficult to enumerate all the available combinations experimentally. In view of this, the Taguchi method, a cost-effective technique for design of experiments, was exploited for estimating the optimal operating condition. This study also evaluated the difference between the suspended growth SBR and the attached cum suspended growth SBR. The total nitrogen (TN), total phosphorus (TP), total biochemical oxygen demand (TBOD)5, and suspended solids (SS) removal efficiencies were 90.2, 83.9, 98.6, and 93.0%, respectively, for the suspended growth SBR. The corresponding values for the attached cum suspended growth SBR were 92.6, 82.1, 98.3, and 93.1%, respectively. It was observed that the batch loading rate influenced the efficiencies in terms of TN removal. It was also noted that step feed and mixing/aeration ratio had significant impact on TP removal performance. The optimal operating condition for the suspended growth SBR system in terms of batch loading rate, feed pattern, and mixing/aeration ratio were 0.170?mgBOD5/mgMLVSS?d, initial feed, and 1-to-1, respectively. The associated TN, TP, TBOD5, and SS removal efficiencies for the suspended growth SBR were 93.8, 98.2, 99.6, and 98.5%, respectively. The corresponding results for the attached cum suspended growth SBR system were 0.170?mgBOD5/mgMLVSS?d, initial feed, and 3-to-1, respectively. Similarly, the corresponding removal efficiencies for the attached cum suspended growth SBR were 94.7, 97.8, 99.3, and 98.8%, respectively.  相似文献   

20.
Carbon tetrachloride (CT) in a synthetic wastewater was effectively degraded in a 2?l upflow anaerobic sludge blanket reactor during the granulation process by increasing the chemical oxygen demand (COD) and CT loadings. The effect of operational parameters such as influent CT concentrations, COD, CT loading, food to mass (F/M) ratio, and specific methanogenic activity (SMA) were also detected during granulation. Over 97% of CT was removed at 37°C, at a COD loading rate of 10?g/L?day. Chemical oxygen demand and CT removal efficiencies of 92 and 88% were achieved when the reactor was operating at CT and COD loading rates of 17.5?mg/L?day and 12.5?g/L?day, respectively. This corresponds to an hydraulic retention time of 0.28?day and an F/M ratio of 0.57?g?COD/g?volatile?suspended?solids?(VSS)?day. In 4?weeks, the seed sludge developed the CT degrading capability that was not very sensitive to shocks. The granular sludge cultivated had a maximum diameter of 2.5?mm and SMA of 1.64?g?COD/g?VSS?day. Glucose biodegradation by CT acclimated anaerobic granules was expressed with competitive inhibition. However the competitive inhibition was not significant since the competitive inhibition coefficient (Ki) was as high as 18.72?mg/L. Kinetic coefficients of k (maximum specific substrate utilization rate), Ks (half velocity coefficient), Y (growth yield coefficient), and b (decay coefficient) were determined as 0.6/day, 1.1?mg/L, 0.23?g?VSS/g glucose-COD, and 0.01/day, respectively, based on growth substrate glucose–COD during CT biotransformation. The CT was treated via biodegradation and this contributed to 89% of the total removal. The removal contributions from biomass adsorption, abiotic transformation, and volatilization were negligible. Adsorption and volatilization accounted for only 0.8 and 0.5% of the total removal, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号