首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hot mix asphalt (HMA) is a composite material that consists of mineral aggregates, asphalt binders, and air voids. A finite element model of the HMA microstructure is developed to study the influence of localized strain distribution on the HMA mechanical response. Image analysis techniques are used to capture the HMA microstructure. Due to limitations on the image resolution, the microstructure is divided into two phases: aggregates larger than 0.3 mm and mastic (binder and aggregates smaller than 0.3 mm). A viscoelastic constitutive relationship is used to represent the mastic phase of the HMA microstructure. The mastic viscoelastic properties are obtained from the results of testing asphalt binders in a dynamic shear rheometer and microstructure analysis of idealized mastic. A step-wise finite element procedure is employed in order to account for the influence of the localized high strains on the mastic viscoelastic properties, and HMA mechanical response. The mastic and binder elements of the microstructure are shown to exhibit high strain values within the nonlinear viscoelastic range. The HMA viscoelastic properties are calculated at different strain levels, and the results are compared with experimental data obtained from the frequency sweep shear test.  相似文献   

2.
The resilient properties of unbound aggregate bases are important parameters in the design of asphalt pavements. Previous studies have shown that these resilient properties exhibit nonlinear and transverse anisotropic characteristics. The paper in hand presents a micromechanics-based approach to model the nonlinear and anisotropic properties of unbound aggregate bases. The anisotropic behavior is captured using two microstructure parameters representing the preferred orientation of aggregate particles, and the ratio of the normal contact stiffness to shear contact stiffness among particles. The nonlinear response is modeled using a relationship that relates the shear modulus to particle packing, material properties, particle size, and confining pressure. The micromechanics model is used to represent the resilient properties for a total of 18 different combinations of material conditions with different aggregate types, moisture contents, and gradation characteristics. Anisotropic and nonlinear resilient properties were measured at ten different stress states for each of the material conditions. The results presented in this paper show that the micromechanics model is capable of successfully representing the experimental measurements.  相似文献   

3.
A study of the micromechanical damage behavior of asphalt concrete is presented. Asphalt concrete is composed of aggregates, mastic cement, and air voids, and its load carrying behavior is strongly related to the local microstructural load transfer between aggregate particles. Numerical simulation of this micromechanical behavior was accomplished by using a finite-element model that incorporated the mechanical load-carrying response between aggregates. The finite-element scheme used a network of special frame elements each with a stiffness matrix developed from an approximate elasticity solution of the stress and displacement field in a cementation layer between particle pairs. Continuum damage mechanics was then incorporated within this solution, leading to the construction of a microdamage model capable of predicting typical global inelastic behavior found in asphalt materials. Using image processing and aggregate fitting techniques, simulation models of indirect tension, and compression samples were generated from surface photographic data of actual laboratory specimens. Model simulation results of the overall sample behavior and evolving microfailure/fracture patterns compared favorably with experimental data collected on these samples.  相似文献   

4.
This study presents micromechanical finite-element (FE) and discrete-element (DE) models for the prediction of viscoelastic creep stiffness of asphalt mixture. Asphalt mixture is composed of graded aggregates bound with mastic (asphalt mixed with fines and fine aggregates) and air voids. The two-dimensional (2D) microstructure of asphalt mixture was obtained by optically scanning the smoothly sawn surface of superpave gyratory compacted asphalt mixture specimens. For the FE method, the micromechanical model of asphalt mixture uses an equivalent lattice network structure whereby interparticle load transfer is simulated through an effective asphalt mastic zone. The ABAQUS FE model integrates a user material subroutine that combines continuum elements with viscoelastic properties for the effective asphalt mastic and rigid body elements for each aggregate. An incremental FE algorithm was employed in an ABAQUS user material model for the asphalt mastic to predict global viscoelastic behavior of asphalt mixture. In regard to the DE model, the outlines of aggregates were converted into polygons based on a 2D scanned mixture microstructure. The polygons were then mapped onto a sheet of uniformly sized disks, and the intrinsic and interface properties of the aggregates and mastic were assigned for the simulation. An experimental program was developed to measure the properties of sand mastic for simulation inputs. The laboratory measurements of the mixture creep stiffness were compared with FE and DE model predictions over a reduced time. The results indicated both methods were applicable for mixture creep stiffness prediction.  相似文献   

5.
Permanent deformation in hot mix asphalt is caused by a combination of densification (decrease in volume and hence increase in density) and shear deformation. The primary objective of this paper is to develop an elastoviscoplastic model that accounts for the influence of important microstructure properties such as anisotropy and damage on permanent deformation. The model incorporates a yield surface based on the Drucker-Prager function that is modified to capture the influence of stress state on the material response. Also, parameters that reflect the directional distribution of aggregates and damage density in the microstructure are included in this yield surface model. The elastoviscoplastic model is converted into a numerical formulation and is implemented in finite element (FE). The FE model is used in this study to simulate experimental measurements under different confining pressures and strain rates.  相似文献   

6.
Parallel implementation of an unstructured finite-element solver using the preconditioned conjugate gradient (PCG) method is described here. High-performance Fortran has been used with the implementation based on a 32-node Pentium II 350MHz cluster running Linux. The PCG solver is set up for the element-by-element method. While this is a highly suitable method for the solution of very large problems, it is not inherently parallelizable in a distributed memory environment. The difficulties associated with the parallelization of this algorithm are presented here, as well as two ways to overcome them in this environment. Initial results have been presented for fairly large problems ranging from 500,000 to 1.6 million unknowns using an eight-noded isoparametric quadrilateral element.  相似文献   

7.
This paper presents a methodology for analyzing the viscoelastic response of asphalt mixtures using the discrete-element method (DEM). Two unmodified (neat) and seven modified binders were mixed with the same aggregate blend in order to prepare the nine hot mix asphalt (HMA) mixtures used in this study. The HMA microstructure was captured using images of vertically cut sections of specimens. The captured grayscale images were processed into black and white images representing the mastic and the aggregate phases, respectively. These microstructure images were used to represent the DEM model geometry. Rheological data for the nine binders were obtained using the dynamic shear rheometer. These data were used to estimate the parameters of the viscoelastic contact models that define the interaction among the mix constituents. The DEM models were subjected to sinusoidal loads similar to those applied in the simple performance test (SPT). The DEM model predictions compared favorably with the SPT measurements. However, the simulation results tended to overpredict the dynamic modulus, E*, for mixtures made with neat binders and underpredict E* for those that consisted of modified binders. The DEM models gave mix phase angles, ?mix, higher than the experimental measurements.  相似文献   

8.
The paper discusses finite element models for predicting the elastic settlement of a strip footing on a variable soil. The paper then goes on to compare results obtained in a probabilistic settlement analysis using a stochastic finite element method based on first order second moment approximations, with the random finite element method based on generation of random fields combined with Monte Carlo simulations. The paper highlights the deficiencies of probabilistic methods that are unable to properly account for spatial correlation.  相似文献   

9.
Longitudinal joint cracking is one of the most prevalent forms of distress in asphalt concrete pavements. The joint area does not achieve the same density as the mat due to an unconfined edge on the initial pass and a cold joint during the second pass. The lower density allows water to penetrate and the material cracks, usually within one?year of construction. There are many techniques for constructing longitudinal joints, one being to preheat the joint prior to paving the second lane. This paper describes a field study conducted in New Hampshire using an infrared joint heater. Thermocouples were embedded in the pavement to determine the extent of heat penetration from the infrared heaters. Cores were taken along the joint and in the travel lanes for both the control and test sections. Density and strength measurements were taken on the cores. Permeability measurements along the control and test joints were performed. A cracking survey performed one?year after construction showed that the section of pavement where the infrared heater was used had significantly less cracking than the control section.  相似文献   

10.
The objective of this study is to visualize and simulate microscale properties of asphalt concrete with three-dimensional discrete element models under mechanical loading. The microstructure of the asphalt concrete sample was composed of three ingredients: coarse aggregates, sand mastic (a combination of fines, fine aggregates, and asphalt binder), and air voids. Coarse aggregates were represented with the irregular polyhedron particles which were randomly created with an algorithm developed for this study. The gaps among the irregular particles were filled with air voids and discrete elements of sand mastic. The mechanical behaviors of the three ingredients were simulated with specific constitutive models at different contacts of discrete elements. Based on the geometric and mechanical models, visualization and simulation of asphalt mixtures were conducted in this study.  相似文献   

11.
在良好的设计配合比和施工条件下,SBS沥青能使沥青路面的耐久性和高温稳定性明显提高。根据赣州市红旗大道东延道路工程的设计情况,简要讲述SBS改性沥青的设计及施工技术要求。  相似文献   

12.
A two-dimensional mechanical model is developed to predict the global and local buckling of a sandwich beam, using classical elasticity. The face sheet and the core are assumed as linear elastic isotropic continua in a state of planar deformation. The core is assumed to have two deformation modes: antisymmetrical and symmetrical with respect to the core geometric midplane. Characteristics of the two deformation modes and the corresponding buckling behavior are shown and it appears that they are identical when the buckling wavelength is short. The present analysis is compared with various previous analytical studies and corresponding experimental results. On the basis of the model developed here, validation and accuracy of several previous theories are discussed for different geometric and material properties of a sandwich beam. The results presented in this paper, verified through finite-element analysis and experiment, are an accurate prediction of the overall buckling behavior of a sandwich beam, for a wide range of material and geometric parameters.  相似文献   

13.
New techniques for both finite-element model updating and damage localization are presented using multiresponse nondestructive test (NDT) data. A new protocol for combining multiple parameter estimation algorithms for model updating is presented along with an illustrative example. This approach allows for the simultaneous use of both static and modal NDT data to perform model updating at the element level. A new damage index based on multiresponse NDT data is presented for damage localization of structures. This index is based on static and modal strain energy changes in a structure as a result of damage. This method depicts changes in physical properties of each structural element compared to its initial state using NDT data. Deficient or potentially damaged structural elements are then selected as the unknown parameters to be updated by parameter estimation. Error function normalization, error function stacking, and multiresponse parameter estimation methods are proposed for using multiple data types for simultaneous stiffness and mass parameter estimation. Also, multiple sets of measurements with various sizes and missing data points can be utilized. This paper uses a laboratory grid model of a bridge deck built at the University of Cincinnati Infrastructure Institute and the corresponding NDT data for validation of the above damage localization and model updating methods. Multiresponse parameter estimation has been utilized to update the stiffness of bearing pads, and both the stiffness and mass of the connections, using static and dynamic NDT data. The static and modal responses of the updated grid model presented a closer match with the NDT data than the responses from the initial model.  相似文献   

14.
Gypsum is made up of interlocked and elongated crystals. The random nature of its morphology suggests to resort to homogenization of random media to investigate its mechanical properties from the scale of the single crystals upwards. Unfortunately, the usual homogenization schemes fail to quantitatively predict the influence of the porosity on the effective Young’s modulus of gypsum. This is clearly due to the inability of such approaches to take into account the elongated nature of the crystals. A modification of the classical self-consistent scheme is proposed. It is validated against elastic characteristics computed by finite element analyses, and also against experiments on real dried gypsum samples (with empty pores). Finally, a strength model based on brittle failure is presented. The whole strength domain in the space of macroscopic principal stresses is derived. The comparison to experimental data in both simple tension and simple compression is remarkably good.  相似文献   

15.
Finite Element Studies of Asphalt Concrete Pavement Reinforced with Geogrid   总被引:1,自引:0,他引:1  
Many geotechnical applications are becoming more sophisticated and solutions derived from simplistic procedure are no longer reasonable or solutions do not exist. This paper describes two-dimensional finite element studies that analyzed the behavior of reinforced asphalt pavement under plane strain conditions and subject to monotonic loading. The asphalt material and soils were expressed using triangular elements of elastoplastic behavior that obeys Mohr–Coulomb criteria with associated and nonassociated flow rules. The geogrid was modeled using a one-dimensional linear elastic bar element. The finite element procedure was validated by comparing the results of analysis with the results obtained from a series of model tests. The load–settlement relationships, settlement profile, and strains in the geogrid were compared. The failure load obtained by assuming subgrade foundation with nonassociated flow rule was smaller than that of associated flow rule. There was only minor difference between the results obtained from the associated and nonassociated plastic models. The finite element procedure was capable of determining most measured quantities satisfactorily except the tensile strain in the geogrid, which was assumed linear elastic. The effects of the stiffness of geogrid reinforcement, thickness of asphalt layer, and strength of subgrade foundation were also investigated. The finite element procedure is a versatile tool for enhanced design of reinforced pavement systems.  相似文献   

16.
This paper describes the experimental and analytical modal analysis of a full-scale cantilevered grandstand. A 3D finite-element model was successfully updated manually based on the global modes identified from ambient vibration measurements. The ambient vibration testing was effective in capturing the global modes of the large grandstand. A number of global vibration modes of the entire grandstand were reliably identified in the frequency range 0–3.1 Hz, in addition to modes in the same frequency range that engaged primarily the cantilever roof structure. Following a two-stage manual FE model updating process, the correlation between the experimental and analytical results showed good agreement, with physically meaningful updated parameters. It was clearly illustrated that both the roof system and the nonstructural elements contributed significantly to the stiffness and mass of the global modes. Useful and novel lessons are highlighted for efficient and reliable future finite-element modeling of global modes of similar grandstand structures.  相似文献   

17.
This is a practical paper which consists of investigating fracture behavior in asphalt concrete using an intrinsic cohesive zone model (CZM). The separation and traction response along the cohesive zone ahead of a crack tip is governed by an exponential cohesive law specifically tailored to describe cracking in asphalt pavement materials by means of softening associated with the cohesive law. Finite-element implementation of the CZM is accomplished by means of a user subroutine using the user element capability of the ABAQUS software, which is verified by simulation of the double cantilever beam test and by comparison to closed-form solutions. The cohesive parameters of finite material strength and cohesive fracture energy are calibrated in conjunction with the single-edge notched beam [SE(B)] test. The CZM is then extended to simulate mixed-mode crack propagation in the SE(B) test. Cohesive elements are inserted over an area to allow cracks to propagate in any direction. It is shown that the simulated crack trajectory compares favorably with that of experimental results.  相似文献   

18.
Three-dimensional finite element analysis is combined with field and laboratory measurement of time domain reflectometry (TDR) cable-grout response to analyze the interaction between the cable, grout, and surrounding soil mass during localized shearing. Finite element (FE) model parameters for the cable and cable-grout interface elements are back-calculated by matching results from laboratory shearing tests to FE calculated response. These parameters are employed in subsequent FE model geometries to model the behavior of TDR cable-grout composites in soft soils. Optimal grout and cable design is determined by analyzing the relationship between grout strength and stiffness and calculated cable shear stress.  相似文献   

19.
Finite element (FE) analysis has become an important tool for predicting building response to tunnel-induced ground movement. Because tunnel construction is a three-dimensional (3D) process, the trend is to apply 3D FE analysis to tunnel-soil-building interaction problems instead of applying the plane-strain models that are commonly used in engineering practice. Since 3D FE analyses require large amounts of computational resources, the geometric dimensions of the 3D models are often kept to a minimum to reduce calculation time. There is, however, a lack of published information concerning appropriate mesh dimensions. This paper investigates the influence of the geometry and the dimension of a 3D FE model on tunnel-induced surface settlement predictions. The paper shows how the vertical boundaries can influence the results. It demonstrates that reasonable results can be obtained by increasing the length of incremental tunnel excavation and by scaling back the settlement values to give a required tunnel volume loss. This study therefore not only highlights the limitations of 3D modeling but also shows its potential for engineering practice.  相似文献   

20.
Many materials exhibit elasto–visco–plastic behavior when subjected to loadings with certain strain rate. Examples include natural materials such as metals, clays, and soils and manmade materials such as some biomimic materials. Some voids may exist or be introduced in these materials. The effects of the voids on the material response are important in predicting the strength, reliability, and service life of structural systems containing these materials. This paper presents the results of applying a statistical micromechanical approach to describe the macroscopic behavior of elasto–visco–plastic materials containing many randomly dispersed spherical voids. Most existing micromechanics based models are only applicable to monotonic proportional loadings. The limitation is removed by integrating the material model into the framework of continuum plasticity. With the discrete integration algorithm and local return mapping algorithm, the proposed computation method is applicable to any loading and unloading histories and is ready for implementing into finite element analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号