首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strontium-substituted calcium phosphate coatings are synthesized by pulsed electrodeposition on titanium alloy (Ti6Al4V) substrates. Experimental conditions of the process are optimized in order to obtain a coating with a 5% atomic substitution of calcium by strontium which corresponds to the best observations on the osteoblast cells activity and on the osteoclast cells proliferation. The physical and chemical characterizations of the obtained coating are carried out by scanning electron microscopy associated to energy dispersive X-ray spectroscopy (EDXS) for X-ray microanalysis and the structural characterization of the coating is carried out by X-ray diffraction. The in vitro dissolution/precipitation properties of the coated substrates are investigated by immersion into Dulbecco's Modified Eagle Medium (DMEM) from 1 h to 14 days. The calcium, phosphorus and strontium concentrations variations in the biological liquid are assessed by Induced Coupled Plasma - Atomic Emission Spectroscopy for each immersion time. The results show that under specific experimental conditions, the electrodeposition process is suitable to synthesize strontium-substituted calcium phosphate coatings. Moreover, the addition of hydrogen peroxide (H2O2) into the electrolytic solution used in the process allows us to observe a control of the strontium release during the immersion of the prosthetic materials into DMEM.  相似文献   

2.
为了研究炭纤维增强羟基磷灰石(HA)复合材料对骨修复的影响,采用声电化学沉积法在炭纤维织物表面直接制备磷酸钙涂层。电解液为含钙、磷离子的溶液,初始pH值4.7,沉积温度50℃。借助红外光谱、扫描电子显微镜及能谱分析对涂层的结构、形貌、组分就行了研究,并选择人类成骨细胞(MG63)检测了材料的体外细胞相容性。结果表明,超声波的迭加使用改变了磷酸钙沉积层的组分和形貌,与传统的电化学工艺相比更具优势。MTS检测证明,用声电法沉积的磷酸盐涂层更大幅度地提高了成骨细胞的附着和增殖。  相似文献   

3.
Bioactive ceramic coatings based on calcium phosphates yield better functionality in the human body for a variety of metallic implant devices including orthopaedic and dental prostheses. In the present study chemically and hence functionally gradient bioceramic coating was obtained by pulsed laser deposition method. Calcium phosphate bioactive ceramic coatings based on hydroxyapatite (HA) and tricalcium phosphate (TCP) were deposited over titanium substrate to produce gradation in physico-chemical characteristics and in vitro dissolution behaviour. Sintered targets of HA and α-TCP were deposited in a multi target laser deposition system. The obtained deposits were characterized by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. Inductively coupled plasma spectroscopy was used to estimate the in vitro dissolution behaviour of coatings. The variation in mechanical property of the gradient layer was evaluated through scratch test and micro-indentation hardness. The bioactivity was examined in vitro with respect to the ability of HA layer to form on the surface as a result of contact with simulated body fluid. It could be inferred that chemically gradient functional bioceramic coating can be produced by laser deposition of multiple sintered targets with variable chemical composition.  相似文献   

4.
Titanium is a commonly used biomaterial for dental and orthopaedic applications. To increase its ability to bond with bone, some attempts were made to coat its surface with calcium phosphate (CaP). This paper describes a new type of coating. Instead of a pure CaP layer, a mixing of titanium dioxide (TiO2) and CaP is fabricated and deposited as a coating. These layers are deposited by a sol-gel route on pure titanium substrates using various pre-treatments. The method consists of mixing a solution of tetrabutyl ortho-titanate or a sol of titanium dioxide with a solution of calcium nitrate and phosphorous esters. This composite is deposited on to commercially pure titanium plates, mechanically polished or blasted with pure crystalline aluminum oxide, using the spin-coating technique. These coatings are then fired at 650 or 850°C for various times. The samples are characterized by X-ray diffraction for their crystallinity, X-ray photoelectron spectroscopy for their surface chemical composition and scanning electron microscopy for their topography. Samples treated at 850°C present a well-pronounced crystallinity, and a high chemical purity at the surface. The topography is strongly related to the viscosity of the precursor and the substrate pre-treatment. Possibilities to structure the outermost layer are presented. © 1999 Kluwer Academic Publishers  相似文献   

5.
Solubility is one of the most important properties in the field of biomaterial. The present paper evaluated the dissolution behavior of simultaneous vapor deposited calcium phosphate coatings in vitro. The coatings were immersed in calcium-free Hank's solution at different periods of time. Characterization of the coatings was performed using scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and Rutherford backscattering spectroscopy, prior to and after immersion. Amorphous coatings showed complete dissolution. Crystalline coatings showed that alpha tricalcium phosphate (α-TCP) phase dissolved steadily throughout the testing time leaving the stable hydroxyapatite phase undegraded. The increased in calcium and phosphate ions due to dissolution of α-TCP provided the means for reprecipitation of apatite on the coating, which became apparent after 7 days of immersion.  相似文献   

6.
Calcium phosphates coatings were deposited onto titanium alloy discs via en electrodeposition method. Titanium alloy discs were blasted with calcium phosphate particles, then etched in a mixture of nitric and fluoric acids and rinsed in demineralized water. The titanium alloy disc (cathode) and platinum mesh (anode) were immersed in a supersaturated calcium phosphate electrolyte buffered at pH 7.4 and connected to a current generator. The microstructure, chemical composition and crystallinity of the electrodeposited coatings were studied as function of time 10–120 min, temperature 25–80°C, current density 8–120 mA/cm2, magnesium and hydrogen carbonate amounts (0.1–1 mM). Uniform calcium phosphate coatings were obtained in 30 min but coating thickness increased with deposition time. Raising the temperature of electrolyte resulted in more uniform coatings as ionic mobility increased. Low current density was preferable due to hydrogen gas evolving at the cathode, which disturbed the deposition of calcium phosphate crystals on titanium. The amounts of magnesium and hydrogen carbonate ions affected both the homogeneity and morphology of the coatings. This study showed that the electrodeposition method is efficient for coating titanium with osteoconductive calcium phosphate layers.  相似文献   

7.
AlCrSiN涂层因具有高硬度、优异的耐磨损性及抗高温氧化性而备受关注。为提高AlCrSiN涂层的性能,采用电弧离子镀技术制备了AlCrSiN涂层,研究了基体偏压对AlCrSiN涂层微观组织及力学性能的影响。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、显微硬度计、划痕仪及球-盘式摩擦磨损试验机对AlCrSiN涂层的表面形貌、物相组成和力学性能进行表征。研究结果表明:不同基体偏压的AlCrSiN涂层具有B1-NaCl晶体结构和无柱状晶结构;适当提高基体偏压,可细化AlCrSiN涂层的晶粒,提高涂层的表面质量及致密性,从而提高涂层的性能;基体偏压为150V的涂层致密性最好,具有更高的硬度(3 430HV)、结合力(76N)及更好的耐磨损性能。  相似文献   

8.
Biphasic calcium phosphates comprising well-controlled mixtures of nonresorbable hydroxyapatite and other resorbable calcium phosphate phases often exhibit a combination of enhanced bioactivity and mechanical stability that is difficult to achieve in single-phase materials. This makes these biphasic bioceramics promising substrate materials for applications in bone tissue regeneration and repair. In this paper we report the synthesis of highly crystalline, biphasic coatings of hydroxyapatite/tetracalcium phosphate with control over the weight fraction of the constituent phases. The coatings were produced by pulsed laser deposition using ablation targets of pure crystalline hydroxyapatite. The fraction of tetracalcium phosphate phase in the coatings was controlled by varying the substrate temperature and the partial pressure of water vapor in the deposition chamber. A systematic study of phase composition in the hydroxyapatite/tetracalcium phosphate biphasic coatings was performed with X-ray diffraction. Tetracalcium phosphate in the coatings obtained at high substrate temperature is not formed by partial conversion of previously deposited hydroxyapatite. Instead, it is produced by nucleation and growth of tetracalcium phosphate itself from the ablation products of the hydroxyapatite target or by accretion of tetracalcium phosphate grains formed during ablation. This finding was confirmed by formation of calcium oxide, not tetracalcium phosphate, after annealing of pure hydroxyapatite coatings at high temperatures of 700–850∘C.  相似文献   

9.
Calcium phosphate was deposited on carbon materials using a sonoelectrochemical method in an electrolyte containing calcium and phosphate ions. The effect of electrolyte concentration on sonoelectrochemically deposited calcium phosphate coatings was investigated and the underlying deposition mechanisms were discussed. The morphology, size and composition of the crystalline deposits changed with the electrolyte concentration. A mixture of plate, sphere and needle-like deposits was obtained at Ca(2+) ion concentrations greater than 16 mM, however needle-like hydroxyapatite (HA) was obtained at lower Ca(2+) concentrations. Analysis revealed that the sonoelectrochemical deposition of calcium phosphate consists of two processes-nucleation and crystal growth. The results suggest that the homogeneous nucleation of calcium phosphates in solution, followed by their absorption onto the carbon surface may account for the mechanism of coating observed at higher ionic concentrations. At lower concentrations, heterogeneous nucleation occurs on the surface of the carbon fibres, followed by the development of islands of crystal growth. The lower ionic concentration was shown to favour the generation of hydroxyapatite on carbon-based materials.  相似文献   

10.
The nanocrystalline Co–W alloy coatings were produced by dual-pulse electrodeposition from aqueous bath with cobalt sulfate and sodium tungstate (Na2WO4). Influence of the current density and Na2WO4 concentration in bath on the microstructure, morphology and hardness of the Co–W alloy coatings were investigated using an X-ray diffraction, a scanning electronic microscope and a Vickers hardness tester, respectively. In addition, the friction and wear properties of the Co–W alloy coating electrodeposited under different condition were evaluated with a ball-on-disk UMT-3MT tribometer. The correlation between the electrodeposition condition, the microstructure and alloy composition, and the hardness and tribological properties of the deposited Co–W alloy coatings were discussed in detail. The results showed that the microhardness of the deposited Co–W alloy coating was significantly affected by its average grain size, W content and crystal orientation. Smaller grain size, higher W content and strong hcp (1 0 0) orientation favor the improvement of the hardness for Co–W alloy coatings. The deposited Co–W alloy coating could obtain the maximum microhardness over 1000 kgf mm−2 by careful control of the electrodeposition conditions. The tribological properties of the electrodeposited Co–W alloy coating were greatly affected by its grain size, microhardness, surface morphologies and composition, and could be significantly improved by optimizing the electrodeposition condition.  相似文献   

11.
Investigations of the size distribution of nanopores were carried out for alumina coatings deposited by the impulse plasma method. The single-phase (metastable and stable correspondingly) alumina coatings were deposited under different conditions of impulse plasma processes. The investigation of nanopore distribution was carried out using small-angle X-ray scattering. Despite the different phase composition of the coatings obtained, the most probable value of nanopores for both alumina coating materials were practically the same and equal to 5 nm. It appears that a coating porosity of the order of nanometres is characteristic for all coatings deposited by the impulse plasma method, because previously similar dimensions of nanopores were found for diamond, TiN and BN. It seems that during the impulse plasma deposition the coating grows on the substrate surface by condensation of ultra-small particles nucleated in the impulse plasma.  相似文献   

12.
Magnesium alloy has similar mechanical properties with natural bone and can degrade via corrosion in the electrolytic environment of the human body. Calcium phosphate has been proven to possess bioactivity and bone inductivity. In order to integrate both advantages, calcium phosphate coating was fabricated on magnesium alloy by a biomimetic method. Supersaturated calcification solutions (SCSs) with different Ca/P ratio and Cl concentration were used as mimetic solutions. The morphology, composition and formation process of the coating were studied with scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), Fourier transformed infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The results show that a uniform calcium phosphate coating was observed on magnesium alloy, the properties of which could be adjusted by the SCSs with different Ca/P ratio. The formation process of the coating was explored by immersing magnesium alloy in SCSs with different Cl concentration which could adjust the hydrogen production. According to SEM results, the hydrogen bubbles were associated with the formation of grass-like and flower-like coating morphologies. In conclusion, the biomimetic method was effective to form calcium phosphate coating on magnesium alloy and the morphology and composition of the coating could be accommodated by the Ca/P ratio and Cl concentration in SCSs.  相似文献   

13.
Magnesium alloy has similar mechanical properties with natural bone and can degrade via corrosion in the electrolytic environment of the human body. Calcium phosphate has been proven to possess bioactivity and bone inductivity. In order to integrate both advantages, calcium phosphate coating was fabricated on magnesium alloy by a biomimetic method. Supersaturated calcification solutions (SCSs) with different Ca/P ratio and Cl- concentration were used as mimetic solutions. The morphology, composition and formation process of the coating were studied with scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), Fourier transformed infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The results show that a uniform calcium phosphate coating was observed on magnesium alloy, the properties of which could be adjusted by the SCSs with different Ca/P ratio. The formation process of the coating was explored by immersing magnesium alloy in SCSs with different Cl- concentration which could adjust the hydrogen production. According to SEM results, the hydrogen bubbles were associated with the formation of grass-like and flower-like coating morphologies. In conclusion, the biomimetic method was effective to form calcium phosphate coating on magnesium alloy and the morphology and composition of the coating could be accommodated by the Ca/P ratio and Cl- concentration in SCSs.  相似文献   

14.
Surface mineralization is an effective method to produce calcium phosphate apatite coating on the surface of bone tissue scaffold which could create an osteophilic environment similar to the natural extracellular matrix for bone cells. In this study, we prepared mineralized poly(d,l-lactide-co-glycolide) (PLGA) and PLGA/gelatin electrospun nanofibers via depositing calcium phosphate apatite coating on the surface of these nanofibers to fabricate bone tissue engineering scaffolds by concentrated simulated body fluid method, supersaturated calcification solution method and alternate soaking method. The apatite products were characterized by the scanning electron microscopy (SEM), Fourier transform-infrared spectroscopy (FT-IR), and X-ray diffractometry (XRD) methods. A large amount of calcium phosphate apatite composed of dicalcium phosphate dihydrate (DCPD), hydroxyapatite (HA) and octacalcium phosphate (OCP) was deposited on the surface of resulting nanofibers in short times via three mineralizing methods. A larger amount of calcium phosphate was deposited on the surface of PLGA/gelatin nanofibers rather than PLGA nanofibers because gelatin acted as nucleation center for the formation of calcium phosphate. The cell culture experiments revealed that the difference of morphology and components of calcium phosphate apatite did not show much influence on the cell adhesion, proliferation and activity.  相似文献   

15.
Strontium is known to reduce bone resorption and stimulate bone formation. Incorporation of strontium into calcium phosphate bioceramics has been widely reported. In this work, calcium and calcium/strontium silicophosphate glasses were synthesized from the sol–gel process and their rheological, thermal, and in vitro biological properties were studied and compared to each other. The results showed that the gel viscosity and thus the rate of gel formation increased by using strontium in glass composition and by increasing aging temperature. In strontium-containing glass, the crystallization temperature increased and the type of the crystallized phase was different to that of strontium-free glass. Both glasses favored precipitation of calcium phosphate layer when they were soaked in simulated body fluid; however strontium seemed to retard the rate of precipitation slightly. The in vitro biodegradation rate of the strontium/calcium silicophosphate glass was higher than that of strontium-free one. The cell culture experiments carried out using rat calvaria osteoblasts showed that the incorporation of strontium into the glass composition stimulated proliferation of the cells and enhanced their alkaline phosphatase activity, depending on cell culture period.  相似文献   

16.
In the present study, the behavior and properties of plasma-sprayed hydroxyapatite coatings [Ca(10)(PO(4))(6)(OH)(2), HAp] were investigated in relation to the spraying process. The experiments were focused on the influence of type of feedstock and spray power on the phase composition and distribution within the coatings. Depth profiles of the coatings were investigated before and after incubation in revised simulated body fluid (SBF) by X-ray diffraction and infrared spectroscopy. Besides HAp, the coatings contain oxyapatite (OAp) and carbonate apatite (CAp). Additionally, tricalcium phosphate (TCP), tetracalcium phosphate (TTCP), CaO, and an amorphous phase were detected in the coatings. The HAp content directly depends on the used spray powder and spray power, where the influence of spray powder is much higher than the influence of the spray power. The grain size range of the spray powder strongly influences the HAp content in the coating and the formation of CaO. The in vitro behavior of the coatings in simulated body fluid mainly depends on the contents of CaO and amorphous calcium phosphate, respectively. The formation of portlandite due to the reaction of the coating with the SBF is strongly influenced by the porosity of the coatings and can be used as an indicator for the depth of interaction between fluid and coating.  相似文献   

17.
The coatings were deposited by reactive plasma spraying (RPS) in air and low-pressure plasma spraying (LPPS) based on the reaction between Ti and B4C powder, respectively. The thermal spray powder of Ti and B4C added with powder Cr (metallic binder) in air is compared with that without powder Cr addition in the low pressure. (Prior to deposition, the powder was screened and separated for RPS whereas spray drying, sintering and sieving were done for LPPS.) The phase composition and the microstructure of coatings were studied by X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The anti-corrosion property of coatings was also investigated. It is found that the coating prepared by RPS, which is more densification, is composed of TiN, TiB2, and a small phase fraction of titanium oxides. The composition of the coating deposited by reactive LPPS is TiB2, Ti(C, N), Ti4N3−x and impurity phase of Ti5Si3. There is no appearance of titanium oxides in low pressure. The coatings have the typical lamellar structure and adhere to the bond coating well. The mean Vickers microhardness value of the coating deposited by RPS is higher than that of the coating deposited by LPPS. Furthermore, the corrosion resistance of the coating deposited by RPS is superior to that of the coating prepared by LPPS in near neutral 3.5 wt% NaCl electrolyte.  相似文献   

18.
The concept of biological fixation of artificial joint prosthesis by using bioactive calcium phosphate coatings has generated considerable interest in recent decades. This paper reports an electrochemical route for fabricating hydroxyapatite (HA), carbonated-HA and fluoridated-HA coatings on porous and non-porous substrates at relatively low temperatures, using aqueous electrolytes. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and infrared spectroscopy (IR) were used to characterize the morphology, structure and chemical composition of the coatings. The results suggest that the electrochemical route for the fabrication of bioactive calcium phosphate coatings may offer significant advantages over the currently used methods.  相似文献   

19.
采用双向脉冲电沉积法制备出高P非晶态Ni-P/Al_2O_3复合镀层,利用扫描电镜(SEM)和能谱分析(EDS)方法考察镀层的微观形貌和化学组成,采用X射线衍射技术(XRD)表征镀层的相结构,并通过分析金属镀层和复合镀层的电化学测试结果,评价不同种类镀层的耐腐蚀能力。结果表明:与直流电沉积法相比,双向脉冲电沉积法可将镀层中的P含量提高至12.06%(质量分数),有利于非晶态Ni-P合金镀层的形成。采用双向脉冲法制备的Ni-P/Al_2O_3复合镀层比直流电沉积法制备的Ni-P/Al_2O_3复合镀层更平整、结晶更致密。脉冲电沉积法制备的非晶态Ni-P合金镀层具有更好的耐蚀性,而且复合微粒Al_2O_3的加入,对进一步提高非晶态Ni-P合金镀层的耐蚀性有积极作用。  相似文献   

20.
Alumina coatings on aluminum alloy were prepared by micro-arc oxidation (MAO) process using DC and AC power supplies, respectively. In comparison with the coating deposited by DCMAO, the influence of the cathodic current on the composition, structure and properties of the ACMAO coating was investigated. It is found that the coating deposited by DCMAO is composed of α-Al2O3, whereas the coating deposited by ACMAO has a mixture composition of α-Al2O3 and γ-Al2O3. The results of properties show that compared with the coatings deposited by DCMAO, the ACMAO coatings possess higher density, hardness and corrosion resistance. It can be attributed to that the DCMAO coating is rougher and existing much more micro-cracks in its inner layer. As a result, the adhesion of the DCMAO coating to the substrate decreases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号