首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In complex open multi-agent systems (MAS), where there is no centralised control and individuals have equal authority, ensuring cooperative and coordinated behaviour is challenging. Norms and conventions are useful means of supporting cooperation in an emergent decentralised manner, however it takes time for effective norms and conventions to emerge. Identifying influential individuals enables the targeted seeding of desirable norms and conventions, which can reduce the establishment time and increase efficacy. Existing research is limited with respect to considering (i) how to identify influential agents, (ii) the extent to which network location imbues influence on an agent, and (iii) the extent to which different network structures affect influence. In this paper, we propose a methodology for learning a model for predicting the network value of an agent, in terms of the extent to which it can influence the rest of the population. Applying our methodology, we show that exploiting knowledge of the network structure can significantly increase the ability of individuals to influence which convention emerges. We evaluate our methodology in the context of two agent-interaction models, namely, the language coordination domain used by Salazar et al. (AI Communications 23(4): 357–372, 2010) and a coordination game of the form used by Sen and Airiau (in: Proceedings of the 20th International Joint Conference on Artificial Intelligence, 2007) with heterogeneous agent learning mechanisms, and on a variety of synthetic and real-world networks. We further show that (i) the models resulting from our methodology are effective in predicting influential network locations, (ii) there are very few locations that can be classified as influential in typical networks, (iii) four single metrics are robustly indicative of influence across a range of network structures, and (iv) our methodology learns which single metric or combined measure is the best predictor of influence in a given network.  相似文献   

2.
With the recent surge of location-based social networks (LBSNs), e.g., Foursquare and Facebook Places, huge amount of human digital footprints that people leave in the cyber-physical space become accessible, including users’ profiles, online social connections, and especially the places that they have checked in. Different from social networks (e.g., Flickr, Facebook) which have explicit groups for users to subscribe or join, LBSNs usually have no explicit community structure. Meanwhile, unlike social networks which only contain a single type of social interaction, the coexistence of online/offline social interactions and user/venue attributes in LBSNs makes the community detection problem much more challenging. In order to capitalize on the large number of potential users/venues as well as the huge amount of heterogeneous social interactions, quality community detection approach is needed. In this paper, by exploring the heterogenous digital footprints of LBSNs users in the cyber-physical space, we come out with a novel edge-centric co-clustering framework to discover overlapping communities. By employing inter-mode as well as intra-mode features, the proposed framework is able to group like-minded users from different social perspectives. The efficacy of our approach is validated by intensive empirical evaluations based on the collected Foursquare dataset.  相似文献   

3.
The appearance of social networks provides great opportunities for people to communicate, share and disseminate information. Meanwhile, it is quite challenge for utilizing a social networks efficiently in order to increase the commercial profit or alleviate social problems. One feasible solution is to select a subset of individuals that can positively influence the maximum other ones in the given social network, and some algorithms have been proposed to solve the optimal individual subset selection problem. However, most of the existing works ignored the constraint on time. They assume that the time is either infinite or only suitable to solve the snapshot selection problems. Obviously, both of them are impractical in the real system. Due to such reason, we study the problem of selecting the optimal individual subset to diffuse the positive influence when time is bounded. We proved that such a problem is NP-hard, and a heuristic algorithm based on greedy strategy is proposed. The experimental results on both simulation and real-world social networks based on the trace data in Shanghai show that our proposed algorithm outperforms the existing algorithms significantly, especially when the network structure is sparse.  相似文献   

4.
Influence maximization is a fundamental research problem in social networks. Viral marketing, one of its applications, aims to select a small set of users to adopt a product, so that the word-of-mouth effect can subsequently trigger a large cascade of further adoption in social networks. The problem of influence maximization is to select a set of K nodes from a social network so that the spread of influence is maximized over the network. Previous research on mining top-K influential nodes assumes that all of the selected K nodes can propagate the influence as expected. However, some of the selected nodes may not function well in practice, which leads to influence loss of top-K nodes. In this paper, we study an alternative influence maximization problem which is naturally motivated by the reliability constraint of nodes in social networks. We aim to find top-K influential nodes given a threshold of influence loss due to the failure of a subset of R(<K) nodes. To solve the new type of influence maximization problem, we propose an approach based on constrained simulated annealing and further improve its performance through efficiently estimating the influence loss. We provide experimental results over multiple real-world social networks in support. This research will further support practical applications of social networks in various domains particularly where reliability would be a main concern in a system deployment.  相似文献   

5.
6.
Wang  Xinjue  Deng  Ke  Li  Jianxin  Yu  Jeffery Xu  Jensen  Christian S.  Yang  Xiaochun 《World Wide Web》2020,23(4):2323-2340
World Wide Web - An online social network can be used for the diffusion of malicious information like derogatory rumors, disinformation, hate speech, revenge pornography, etc. This motivates the...  相似文献   

7.
In recent years, due to the surge in popularity of social-networking web sites, considerable interest has arisen regarding influence maximization in social networks. Given a social network structure, the problem of influence maximization is to determine a minimum set of nodes that could maximize the spread of influences. With a large-scale social network, the efficiency and practicability of such algorithms are critical. Although many recent studies have focused on the problem of influence maximization, these works in general are time-consuming when a social network is large-scale. In this paper, we propose two novel algorithms, CDH-Kcut and Community and Degree Heuristic on Kcut/SHRINK, to solve the influence maximization problem based on a realistic model. The algorithms utilize the community structure, which significantly decreases the number of candidates of influential nodes, to avoid information overlap. The experimental results on both synthetic and real datasets indicate that our algorithms not only significantly outperform the state-of-the-art algorithms in efficiency but also possess graceful scalability.  相似文献   

8.
Wang  Yaqing  Feng  Chunyan  Chen  Ling  Yin  Hongzhi  Guo  Caili  Chu  Yunfei 《World Wide Web》2019,22(6):2611-2632
World Wide Web - User identity linkage has important implications in many cross-network applications, such as user profile modeling, recommendation and link prediction across social networks. To...  相似文献   

9.
In this paper, we investigate the positive influence dominating set (PIDS) which has applications in social networks. We prove that PIDS is APX-hard and propose a greedy algorithm with an approximation ratio of H(δ) where H is the harmonic function and δ is the maximum vertex degree of the graph representing a social network.  相似文献   

10.
Social network analysis is an active area of study beyond sociology. It uncovers the invisible relationships between actors in a network and provides understanding of social processes and behaviors. It has become an important technique in a variety of application areas such as the Web, organizational studies, and homeland security. This paper presents a visual analytics tool, OntoVis, for understanding large, heterogeneous social networks, in which nodes and links could represent different concepts and relations, respectively. These concepts and relations are related through an ontology (also known as a schema). OntoVis is named such because it uses information in the ontology associated with a social network to semantically prune a large, heterogeneous network. In addition to semantic abstraction, OntoVis also allows users to do structural abstraction and importance filtering to make large networks manageable and to facilitate analytic reasoning. All these unique capabilities of OntoVis are illustrated with several case studies  相似文献   

11.
12.
Li  Weimin  Fan  Yuting  Mo  Jun  Liu  Wei  Wang  Can  Xin  Minjun  Jin  Qun 《World Wide Web》2020,23(2):1261-1273
World Wide Web - In the study of influence maximization in social networks, the speed of information dissemination decreases with increasing time and distance. The investigation of the...  相似文献   

13.
Influence maximization, defined by Kempe et al. (SIGKDD 2003), is the problem of finding a small set of seed nodes in a social network that maximizes the spread of influence under certain influence cascade models. The scalability of influence maximization is a key factor for enabling prevalent viral marketing in large-scale online social networks. Prior solutions, such as the greedy algorithm of Kempe et al. (SIGKDD 2003) and its improvements are slow and not scalable, while other heuristic algorithms do not provide consistently good performance on influence spreads. In this article, we design a new heuristic algorithm that is easily scalable to millions of nodes and edges in our experiments. Our algorithm has a simple tunable parameter for users to control the balance between the running time and the influence spread of the algorithm. Our results from extensive simulations on several real-world and synthetic networks demonstrate that our algorithm is currently the best scalable solution to the influence maximization problem: (a) our algorithm scales beyond million-sized graphs where the greedy algorithm becomes infeasible, and (b) in all size ranges, our algorithm performs consistently well in influence spread—it is always among the best algorithms, and in most cases it significantly outperforms all other scalable heuristics to as much as 100–260% increase in influence spread.  相似文献   

14.
A note on maximizing the spread of influence in social networks   总被引:2,自引:0,他引:2  
We consider the spread maximization problem that was defined by Domingos and Richardson (2001, 2002) [7] and [22]. In this problem, we are given a social network represented as a graph and are required to find the set of the most “influential” individuals that by introducing them with a new technology, we maximize the expected number of individuals in the network, later in time, that adopt the new technology. This problem has applications in viral marketing, where a company may wish to spread the rumor of a new product via the most influential individuals in popular social networks such as Myspace and Blogsphere.The spread maximization problem was recently studied in several models of social networks (Kempe et al. (2003, 2005) [14] and [15], Mossel and Roch (2007) [20]). In this short paper we study this problem in the context of the well studied probabilistic voter model. We provide very simple and efficient algorithms for solving this problem. An interesting special case of our result is that the most natural heuristic solution, which picks the nodes in the network with the highest degree, is indeed the optimal solution.  相似文献   

15.
Many real applications of Bayesian networks (BN) concern problems in which several observations are collected over time on a certain number of similar plants. This situation is typical of the context of medical monitoring, in which several measurements of the relevant physiological quantities are available over time on a population of patients under treatment, and the conditional probabilities that describe the model are usually obtained from the available data through a suitable learning algorithm. In situations with small data sets for each plant, it is useful to reinforce the parameter estimation process of the BN by taking into account the observations obtained from other similar plants. On the other hand, a desirable feature to be preserved is the ability to learn individualized conditional probability tables, rather than pooling together all the available data. In this work we apply a Bayesian hierarchical model able to preserve individual parameterization, and, at the same time, to allow the conditionals of each plant to borrow strength from all the experience contained in the data-base. A testing example and an application in the context of diabetes monitoring will be shown  相似文献   

16.
We address the problem of detecting anti-majority opinionists using the value-weighted mixture voter (VwMV) model. This problem is motivated by the fact that 1) each opinion has its own value and an opinion with a higher value propagates more easily/rapidly and 2) there are always people who have a tendency to disagree with any opinion expressed by the majority. We extend the basic voter model to include these two factors with the value of each opinion and the anti-majoritarian tendency of each node as new parameters, and learn these parameters from a sequence of observed opinion data over a social network. We experimentally show that it is possible to learn the opinion values correctly using a short observed opinion propagation data and to predict the opinion share in the near future correctly even in the presence of anti-majoritarians, and also show that it is possible to learn the anti-majoritarian tendency of each node if longer observation data is available. Indeed, the learned model can predict the future opinion share much more accurately than a simple polynomial extrapolation can do. Ignoring these two factors substantially degrade the performance of share prediction. We also show theoretically that, in a situation where the local opinion share can be approximated by the average opinion share, 1) when there are no anti-majoritarians, the opinion with the highest value eventually takes over, but 2) when there are a certain fraction of anti-majoritarians, it is not necessarily the case that the opinion with the highest value prevails and wins, and further, 3) in both cases, when the opinion values are uniform, the opinion share prediction problem becomes ill-defined and any opinion can win. The simulation results support that this holds for typical real world social networks. These theoretical results help understand the long term behavior of opinion propagation.  相似文献   

17.
Online event-based social services allow users to organize social events by specifying the themes, and invite friends to participate social events. While the event information can be spread over the social network, it is expected that by certain communication between event hosts, users interested in the event themes can be as more as possible. In this paper, by combining the ideas of team formation and influence maximization, we formulate a novel research problem, Influential Team Formation (ITF), to facilitate the organization of social events. Given a set L of required labels to describe the event topics, a social network, and the size k of the host team, ITF is to find a k-node set S that satisfying L and maximizing the Influence-Cost Ratio (i.e., the influence spread per communication cost between team members). Since ITF is proved to be NP-hard, we develop two greedy algorithms and one heuristic method to solve it. Extensive experiments conducted on Facebook and Google+ datasets exhibit the effectiveness and efficiency of the proposed methods. In addition, by employing the real event participation data in Meetup, we show that ITF with the proposed solutions is able to predict organizers of influential events.  相似文献   

18.
In this paper, we present a comprehensive approach for extracting and relating Arabic multiword expressions (MWE) from Social Networks. 15 million tweets were collected and processed to form our data set. Due to the complexity of processing Arabic and the lack of resources, we built an experimental system to extract and relate similar MWE using statistical methods. We introduce a new metrics for measuring valid MWE in Social Networks. We compare results obtained from our experimental system against semantic graph obtained from web knowledgebase.  相似文献   

19.
Wireless users have the opportunity to choose between heterogeneous access modes, such as 3G, WiFi or WiMAX for instance, which operate with different distance ranges. Due to the increasing commercial interest in access networks, those technologies are often managed by competing providers. The goal of this paper is to study the price war occurring in the case of two providers, with one provider operating in a sub-area of the other. A typical example is that of a WiFi operator against a WiMAX one, WiFi being operated in the smaller area. Using a simple model, we discuss how, for fixed prices, (elastic) demand is split among providers, and then characterize the Nash equilibria for the price war. We derive the conditions on provider capacities and coverage areas under which providers share demand on the common area. A striking additional result is that among the Nash equilibria, the one for which providers set the largest price corresponds to the case when the competitive environment does not bring any loss in terms of social welfare with respect to the socially optimal situation: at equilibrium, the overall utility of the system is maximized. The price of stability is one.  相似文献   

20.
Wei  Shaowei  Yu  Guoxian  Wang  Jun  Domeniconi  Carlotta  Zhang  Xiangliang 《Machine Learning》2021,110(6):1505-1526
Machine Learning - Traditional clustering algorithms focus on a single clustering result; as such, they cannot explore potential diverse patterns of complex real world data. To deal with this...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号