首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modelling of parabolic trough direct steam generation solar collectors   总被引:2,自引:0,他引:2  
Solar electric generation systems (SEGS) currently in operation are based on parabolic trough solar collectors using synthetic oil heat transfer fluid in the collector loop to transfer thermal energy to a Rankine cycle turbine via a heat exchanger. To improve performance and reduce costs direct steam generation in the collector has been proposed. In this paper the efficiency of parabolic trough collectors is determined for operation with synthetic oil (current SEGS plants) and water (future proposal) as the working fluids. The thermal performance of a trough collector using Syltherm 800 oil as the working fluid has been measured at Sandia National Laboratory and is used in this study to develop a model of the thermal losses from the collector. The model is based on absorber wall temperature rather than fluid bulk temperature so it can be used to predict the performance of the collector with any working fluid. The effects of absorber emissivity and internal working fluid convection effects are evaluated. An efficiency equation for trough collectors is developed and used in a simulation model to evaluate the performance of direct steam generation collectors for different radiation conditions and different absorber tube sizes. Phase change in the direct steam generation collector is accounted for by separate analysis of the liquid, boiling and dry steam zones.  相似文献   

2.
We describe a mathematical model for the optical and thermal performance of non-evacuated CPC solar collectors with a cylindrical absorber, when the heat loss coefficient is temperature-dependent. Detailed energy balance at the absorber, reflector and cover of the CPC cavity yields heat losses as a function of absorber temperature and solar radiation level. Using a polynomial approximation of those heat losses, we calculate the thermal efficiency of the CPC collector. Numerical results show that the performance of the solar collector (η vs. ΔTf(0)/Icoll) is given by a set of curves, one for each radiation level. Based on the solution obtained to express the collector performance, we propose to plot efficiency against the relation of heat transfer coefficients at absorber input and under stagnation conditions. The set of characteristic curves merge, then, into a single curve that is not dependent on the solar radiation level. More conveniently, linearized single plots are obtained by expressing efficiency against the square of the difference between the inlet fluid temperature and the ambient temperature divided by the solar radiation level. The new way of plotting solar thermal collector efficiency, such that measurements for a broad range of solar radiation levels can be unified into a single curve, enables us to represent the performance of a large class of solar collectors, e.g. flat plate, CPC and parabolic troughs, whose heat loss functions are well represented by second degree polynomials.  相似文献   

3.
Solar energy is one of the best sources of renewable energy with minimal environmental impact. A numerical study has been conducted to investigate the natural convection inside a solar collector having a flat‐plate cover and a sine‐wave absorber. The water‐alumina nanofluid is used as the working fluid inside the solar collector. The governing differential equations with boundary conditions are solved by the penalty finite element method using Galerkin's weighted residual scheme. The effects of physical parameters on the natural convection heat transfer are simulated. These parameters include the number of wave λ and non‐dimensional amplitude A of the sinusoidal corrugated absorber. Comprehensive average Nusselt number, average temperature, and mean velocity field for both nanofluid and base fluid within the collector are presented as functions of the parameters mentioned above. Comparison with previously published work is made and found to be in excellent agreement. The numerical results show that the highest heat transfer rate is observed for both the largest λ and A. In addition, the design for enhancing the performance of the collector is determined by examining the above‐mentioned results. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21026  相似文献   

4.
This paper presents a numerical investigation on the thermal performance of a solar latent heat storage unit composed of rectangular slabs combined with a flat-plate solar collector. The rectangular slabs of the storage unit are vertically arranged and filled with phase change material (PCM: RT50) dispersed with high conductive nanoparticles (Al2O3). A heat transfer fluid (HTF: water) goes flow in the solar collector and receives solar thermal energy form the absorber area, then circulates between the slabs to transfer heat by forced convection to nanoparticle-enhanced phase change material (NEPCM). A numerical model based on the finite volume method and the conservation equations was developed to model the heat transfer and flow processes in the storage unit. The developed model was validated by comparing the obtained results with the experimental, numerical and theoretical results published in the literature. The thermal performance of the investigated latent heat storage unit combined with the solar collector was evaluated under the meteorological data of a representative day of the month of July in Marrakesh city, Morocco. The effect of the dispersion of high conductive nanoparticles on the thermal behavior and storage performance was also evaluated and compared with the case of base PCM without additives.  相似文献   

5.
Absorption of solar radiation in the glass cover(s) of a flat plate solar collector increases the temperature of cover(s) and hence changes the values of convective and radiative heat transfer coefficients. The governing equations for the case of single as well as double glazed collector have been solved for inner and outer surface temperatures of glass cover(s) with/without including the effect of absorption of solar radiation in the glass cover(s), with appropriate boundary conditions. The effects of absorption of solar radiation on inner and outer surface temperatures and consequently on convective and radiative heat transfer coefficients have been studied over a wide range of the independent variables. The values of glass cover temperatures obtained from numerical solutions of heat balance equations with and without including the effect of absorption of solar radiation in the glass cover(s) are compared. For a single glazed collector the increase in glass cover temperature due to absorption of solar radiation could be as high as 6°. The increase in temperatures of first and second glass covers of a double glazed collector could be as high as 14° and 11°, respectively. The effect on the convective heat transfer coefficient between the absorber plate and the first glass cover is substantial. The difference in the values of the convective heat transfer coefficients between the absorber plate and the first glass cover (hcp1) of a double glazed collector for the two cases: (i) including the effect of absorption and (ii) neglecting the effect of absorption in glass cover, could be as high as 49%. Correlations for computing the temperatures of inner and outer surfaces of the glass cover(s) of single and double glazed flat plate collectors are developed. The relations developed enable incorporation of the effect of absorption of solar radiation in glass cover(s) in the relations for inner and outer surface temperatures in a simple manner. By making use of the relations developed for inner and outer surface temperatures of glass cover(s) the convective and radiative heat transfer coefficients can be calculated so close to those obtained by making use of surface temperatures of glass cover(s) obtained by numerical solutions of heat balance equations that numerical solutions of heat balance equations are not required.  相似文献   

6.
The buoyancy flow and heat transfer characteristics inside a solar collector having the flat‐plate cover and sinusoidal corrugated absorber are analyzed numerically. The water‐based nanofluid with alumina and copper nanoparticles is used as the working fluid inside the solar collector. The governing partial differential equations with proper boundary conditions are solved by the finite element method using Galerkin's weighted residual scheme. The behavior of both nanoparticles related to performance such as temperature and velocity distributions, radiative and convective heat transfers, mean temperature, and velocity of the nanofluid is investigated systematically. This performance includes the solid volume fraction, namely ?1 and ?2, with respect to Al 2 O 3 and Cu nanoparticles. The results show that the better performance of heat transfer inside the collector is found by using the highest ?2 than ?1. The result of this study expresses a good agreement with the theoretical result available in the literature. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(1): 61–79, 2014; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21061  相似文献   

7.
ABSTRACT

The paper is related to the use of magnetic nanofluids (ferrofluids) in a direct absorption solar parabolic trough collector, which enhances thermal efficiency compared to conventional solar collectors. By applying the right magnetic intensity and magnetic field direction, the thermal conductivity of the fluid increased higher than typical nanofluids. Moreover, the ferrofluids exhibit excellent optical properties. The external magnetic source is installed to alter the thermo-physical properties of the fluid, and the absorber tube does not have selective surface allowing ferrofluids to absorb the incoming solar irradiance directly. In this paper, an experimental investigation of the performance of small scale direct absorption solar collector using ferrofluids as an absorber was conducted. Nanoparticle concentrations of 0.05 vol% at the operational temperatures between 19°C and 40°C were used in the current study. The results show that using ferrofluids as a heat transfer fluid increases the efficiency of solar collectors. In the presence of the external magnetic field, the solar collector efficiency increases to the maximum, 25% higher than the conventional parabolic trough. At higher temperatures, the ferrofluids show much better efficiency than conventional heat transfer fluid. The study indicated that nanofluids, even of low-content, have good absorption of solar radiation, and can improve the outlet temperatures and system efficiencies. The study shows the potential of using ferrofluids in the direct absorption solar collector.  相似文献   

8.
Three‐dimensional natural convection in an inclined solar collector equipped with partitions has been investigated numerically. The presence of partitions improves the performances of the collector by increasing the heat transfer near the absorber. A parametric study was done for various partitions length and Rayleigh numbers, while Prandtl number and inclination angle were fixed at 0.71 and 45°, respectively. Results are reported in terms of isosurfaces of temperature, isotherms, particles trajectories, velocity vector projection, average Nusselt number along the absorber plate and entropies generation contours.  相似文献   

9.
Concentrating solar thermal systems offer a promising method for large scale solar energy collection. Although concentrating collectors are generally thought of as large-scale stand-alone systems, there is a huge opportunity to use novel concentrating solar thermal systems for rooftop applications such as domestic hot water, industrial process heat and solar air conditioning for commercial, industrial and institutional buildings. This paper describes the thermal performance of a new low-cost solar thermal micro-concentrating collector (MCT), which uses linear Fresnel reflectors, and is designed to operate at temperatures up to 220 °C. The modules of this collector system are approximately 3 m long by 1 m wide and 0.3 m high. The objective of the study is to optimise the design to maximise the overall thermal efficiency. The absorber is contained in a sealed enclosure to minimise convective losses. The main heat losses are due to natural convection inside the enclosure and radiation heat transfer from the absorber tube. In this paper we present the results of a computational and experimental investigation of radiation and convection heat transfer in order to understand the heat loss mechanisms. A computational model for the prototype collector has been developed using ANSYS–CFX, a commercial computational fluid dynamics software package. The numerical results are compared to experimental measurements of the heat loss from the absorber, and flow visualisation within the cavity. This paper also presents new correlations for the Nusselt number as a function of Rayleigh number.  相似文献   

10.
In this paper, forced convection heat transfer nanofluid flow inside the receiver tube of solar parabolic trough collector is numerically simulated. Computational Fluid Dynamics (CFD) simulations are carried out to study the influence of using nanofluid as heat transfer fluid on thermal efficiency of the solar system. The three-dimensional steady, turbulent flow and heat transfer governing equations are solved using Finite Volume Method (FVM) with the SIMPLEC algorithm. The results show that the numerical simulation are in good agreement with the experimental data. Also, the effect of various nanoparticle volume fraction on thermal and hydrodynamic characteristics of the solar parabolic collector is discussed in details. The results indicate that, using of nanofluid instead of base fluid as a working fluid leads to enhanced heat transfer performance. Furthermore, the results reveal that by increasing of the nanoparticle volume fraction, the average Nusselt number increases.  相似文献   

11.
Ultra-thin-channel solar water collector efficiency (UCSWC) was investigated theoretically and experimentally. An ultra-thin-channel solar water collector was constructed using several flat plates with an ultra-thin fluid channel formed using an adjustable flexible silicon frame inserted between the absorber plate and bottom plate. The advantages of the ultra-thin-channel solar water collector are low absorber plate temperature and low total water mass flow rate, resulting in considerable collector efficiency improvement with high outlet fluid temperature and low pump power requirement. A simple and general modeling method was developed to predict the collector efficiencies and mean temperatures of the glass cover, absorber plate and fluid. Good agreement was achieved between the calculated and experimental values. The superior collector efficiencies of the UCSWC are obtained as 82.2% and 75.5% for the inlet temperatures 30°C and 70°C, respectively, operating at a total fluid mass flow 8.3 × 10?3 kg/s and solar radiation incident of 1100 W/m2.  相似文献   

12.
Parabolic trough solar collector usually consists of a parabolic solar energy concentrator, which reflects solar energy into an absorber. The absorber is a tube, painted with solar radiation absorbing material, located at the focal length of the concentrator, usually covered with a totally or partially vacuumed glass tube to minimize the heat losses. Typically, the concentration ratio ranges from 30 to 80, depending on the radius of the parabolic solar energy concentrator. The working fluid can reach a temperature up to 400°C, depending on the concentration ratio, solar intensity, working fluid flow rate and other parameters. Hence, such collectors are an ideal device for power generation and/or water desalination applications. However, as the length of the collector increases and/or the fluid flow rate decreases, the rate of heat losses increases. The length of the collector may reach a point that heat gain becomes equal to the heat losses; therefore, additional length will be passive. The current work introduces an analysis for the mentioned collector for single and double glass tubes. The main objectives of this work are to understand the thermal performance of the collector and identify the heat losses from the collector. The working fluid, tube and glass temperature's variation along the collector is calculated, and variations of the heat losses along the heated tube are estimated. It should be mentioned that the working fluid may experience a phase change as it flows through the tube. Hence, the heat transfer correlation for each phase is different and depends on the void fraction and flow characteristics. However, as a first approximation, the effect of phase change is neglected. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A mathematical model that describes the dynamics of the heat transfer in an inflatable-tunnel solar collector for air heating is proposed and validated. The model is distributed-parameters, one-dimensional and unsteady-state. It considers the thermal inertia of a pebble bed acting as the absorber surface and is constituted by three equations that describe the temperature distributions of the three system components: polyethylene cover, transfer fluid (air) and absorber surface.To solve the governing equations, a novel numerical scheme that differs from the standard method of finite differences in the form of generating the discretization equations is proposed. In this scheme, the dimensionless versions of the equations are reduced to linear canonical forms of first order and then are solved analytically in small spatial domains to produce discretization equations in an explicit form.To validate the quality of the present model, some experimental tests in a 50 m long inflatable-tunnel solar collector were carried out. Results of the model compare favorably with experimental results.  相似文献   

14.
A rigorous theoretical approach of a flat-plate solar collector with a black absorber considering the glass cover as an absorbing–emitting media is presented. The glass material is analyzed as a non-gray plane-parallel medium subjected to solar and thermal irradiations in one-dimensional case using the Radiation Element Method by Ray Emission Model (REM2). The optical constants of a clear glass window proposed by Rubin have been used. These optical constants, 160 values of real part n and imaginary part k of the complex refractive index of a clear glass, cover the range of interest for calculating the solar and thermal radiative transfer through the glass cover. The computational time for predicting the thermal behavior of solar collector was found to be prohibitively long for the non-gray calculation using 160 values of n and k. Therefore a suitable semi-gray model is proposed for rapid calculation. The profile of the efficiency curve obtained in the present study was found to be not linear in shape. Indeed, the heat loss from the collector is a combination of convection and radiation and highly non linear. The effect of the outside convective heat transfer on the efficiency curve is also studied. In fact, when the convection is the dominant heat transfer mode compared with the radiation one, the profile of the efficiency curve is more or less straight line. Consequently, the heat loss coefficient could be calculated using Klein model. It has been also shown that the effect of the wind speed on the glass cover mean temperature is very important. This effect increases with the increase of the mean absorber temperature.  相似文献   

15.
The thermal heat performance of a solar air collector depends strongly on the thermal heat loss and the efficiency factor. In order to increase these performances, it is necessary to use a solar air collector which is well insulated and where the fluid flow is fully developed turbulent flow. It needs a high heat transfer between the absorber plate and the fluid to decrease the absorber‐plate temperature and hence the heat loss by radiation from the absorber to the ambient. This increases the efficiency factor. In the present paper, the heat loss and efficiency factor are treated for solar air collectors with selective and nonselective absorber plate. It is shown that the selectivity of the absorber plate cannot play an important role in a well‐insulated solar collector with a fanned system which permits a fully developed turbulent flow and, in consequence, high heat transfer. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
Accurate modeling of solar collector system using a rigorous radiative model is applied for the glass cover which represents the most important component of the system and greatly affects the thermal performance. The glass material is analyzed as a non-gray plane-parallel medium subjected to solar and thermal irradiations in one dimensional case using the radiation element method by ray emission model (REM2). The optical constants of a clear and low-iron glass materials proposed by Rubin have been used. These optical constants, 160 values of real part n and imaginary part k of the complex refractive index of such materials, cover the range of interest for calculating the solar and thermal radiative transfer through the glass cover. The computational times for predicting the thermal behavior of solar collector were found to be prohibitively long for the non-gray calculation using 160 values of n and k for both glasses. Therefore, suitable semi-gray models have been proposed for rapid calculation. The temperature distribution within the glass cover shows a good agreement with that obtained with iterative method in case of clear glass. It has been shown that the effect of the non-linearity of the radiative heat exchange between the black plate absorber and the surroundings on the shape of the efficiency curve is important. Indeed, the thermal loss coefficient is not constant but is a function of temperature, due primarily to the radiative transfer effects. Therefore, when the heat exchange by radiation is dominant compared with the convective mode, the profile of the efficiency curve is not linear. It has been also shown that the instantaneous efficiency of the solar collector is higher in case of low-iron glass cover.  相似文献   

17.
DSG太阳能槽式集热器的热性能研究   总被引:1,自引:1,他引:0  
采用数值计算的方法分别对稳态条件下直接产生蒸汽(DSG)太阳能槽式集热管中单相水区、饱和相区和干蒸汽相区的吸收管温度沿周向的分布进行了研究,在此基础上建立了集热器热损模型,并分析了流体温度、质量流量及工作压力对集热管中不同相区热损的影响.结果表明:影响集热器热损的关键因素是流体温度,随着流体与环境温差的增大,集热管中各相区的热损增加;流体的质量流量和工作压力对集热器热损的影响不大.  相似文献   

18.
The transversal aspect ratio of solar air heaters (SAHs) is a critical geometric parameter that influences the heat transfer from the absorber plate to the working fluid and, accordingly, the overall heat loss level. The present work addresses the effect of the aspect ratio on the performance of a solar air heating system and the behavior of heat transfer coefficients (HTCs) within it and along the flow channel. A mathematical model of energy-balance equations was formulated to examine and analyze the double-glazed solar air heater thermal behavior. The Eismann correlation, which is more accurate than Holland's correlation, was employed to determine the HTC between the two glass covers. The useful energy, Nusselt number (Nu), efficiency, overall loss, and HTCs as a function of the aspect ratio were evaluated across the collector length. On the basis of the findings, the higher the ratio, the better the efficiency of the SAH. Indeed, increasing the collector's cross-sectional aspect ratio (r) up to 19 increases useful energy efficiency by more than 87%, Nu by 84%, thermohydraulic efficiency from 0.4 to 0.76, and overall heat loss by 1.15 W/(m2 K). Furthermore, reducing r from 19 to 2 will improve the collector power from 1.855 to 3.473 kW.  相似文献   

19.
《Applied Thermal Engineering》2000,20(14):1297-1314
Polymers have been proven to be high potential low-cost materials for the design and mass production not only for ordinary solar water heaters but also for very simple large size, modular solar collectors, suitable for easy erection of large solar heating plants. Their major drawback for solar–thermal conversion applications is their low thermal conductivity, which prohibits their use unless an appropriate absorber design is employed. The low thermal conductivity of polymers has imposed the need of a particular absorber design, which is basically composed of a pair of dark, closely spaced parallel plates at the top of which solar radiation is absorbed, forming a thin channel for the flow of the heat transfer fluid. The aim of the present work is to investigate the particular limitations of this polymer plate absorber design, for a wide range of collector loss and convective heat transfer coefficients between heat transfer fluid and absorber plate. The aim is also to calculate the particular collector efficiency factors and conditions under which the associated collector performance parameters should be modified to account for the finite absorber plate conductance. This conductance was proven to be another decisive absorber design parameter, improper selection of which may probably lead to strong deterioration of the collector efficiency.  相似文献   

20.
In order to cope up with the increase in energy demand and decline in fossil fuels, it has become imperative to use renewable resources efficiently. Among these renewable resources, solar thermal energy is abundant in nature. Solar water heating systems are one of the most important applications of solar thermal energy. Providing internal fins to absorber tube is the technique to improve heat transfer augmentation. Hence in the present study, experiments were performed on solar flat plate collector with different cross section of absorber tubes (plain tube and internally grooved tubes with different helix angles) and by varying the mass flow rates of the working fluids. This study reports the experimental results of flat plate collector, where the working fluid is water and aqueous ethylene glycol (50 : 50). Temperature profile of grooved absorber tube will be compared with plain tube. Since conversion efficiency of solar devices is low, the present study mainly focuses on improving the efficiency of solar flat plate collector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号