首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: It was previously reported that the combination of granulocyte-macrophage-colony-stimulating factor (GM-CSF) and granulocyte-CSF (G-CSF) for 4 days mobilized more primitive CD34+ subsets than did either G-CSF or GM-CSF alone. STUDY DESIGN AND METHODS: The studies determine the optimal number of days of growth factor dosing for mobilization and collection of peripheral blood progenitor cells, by increasing the days of administration of GM-CSF and/or G-CSF or employing the sequential administration of GM-CSF followed by G-CSF. Sixty normal subjects were given injections of G-CSF or GM-CSF alone; GM-CSF and G-CSF concurrently for 4, 5, or 6 days; or a sequential regimen of GM-CSF for 3 or 4 days followed by G-CSF for 2 or 3 days. A 10-L apheresis was performed 24 hours after the last dose. RESULTS: The three most efficacious mobilization regimens consisted of sequential GM-CSF for 3 days followed by G-CSF for either 2 or 3 days and G-CSF alone for 5 days. Each of these regimens resulted in the collection of significantly greater numbers of CD34+ cells by apheresis than any of the 4-day dosing regimens with G-CSF and/or GM-CSF (sequential GM-CSF/G-CSF: 3 days/2 days = 3.58 +/- 0.53 x 106 CD34+ cells/kg; GM-CSF/G-CSF: 3 days/3 days = 4.45 +/- 1.08 x 10(6) CD34+ cells/kg; G-CSF: 5 days = 3.58 +/- 0.97 x 10(6) CD34+ cells/kg; all p<0.05 vs. G-CSF and/or GM-CSF for 4 days). Clonogenic assays generally paralleled the level of CD34+ cells. Regimens containing GM-CSF resulted in a higher percentage of the cells from primitive CD34+/CD38-/HLA-DR+ subset than G-CSF alone. CONCLUSION: Compared with 4-day dosing regimens with G-CSF and/or GM-CSF, mobilization of CD34+ cells in normal subjects using sequential GM-CSF for 3 days followed by G-CSF for 2 or 3 days or using G-CSF alone for 5 days increased the number CD34+ cells that can be collected by a single 10-L apheresis 24 hours after the last dose of cytokine.  相似文献   

2.
In order to potentially mobilize and harvest the Ph cells observed in most patients with chronic myeloid leukaemia (CML) during interferon-alpha (IF-alpha) therapy, G-CSF (filgrastim), 5 microg/kg/d, was administered subcutaneously together with IF-alpha to 30 CML patients in haematological remission but with various degrees of cytogenetic remission, after IF-alpha therapy. Peripheral blood stem cells (PBSC) were harvested using standard aphereses from day 5 of G-CSF Patients underwent one to four (median three) aphereses. Median total yields/kg were 7.6 (range 3.8-25) x 10(8) MNC, 3.4 (0-140) x 10(6) CD34+ cells, and 17 (1.1-107) x 10(4) CFU-GM. No patient had a significant increase in the percentage of Ph+ cells in the bone marrow under G-CSF therapy. The percentage of Ph+ cells in apheresis products tended to decrease between the first and the last apheresis (P = 0.05). 14 patients who were not responsive to IF-alpha were transplanted after conditioning with busulphan 16 mg/kg and melphalan 140 mg/m2. Median time to neutrophils > 0.5 x 10(9)/l was 20 d (16-114 d) and to platelets > 50 x 10(9)/l 18 d (12-149 d). Nine patients had a major cytogenetic response post graft, which correlated with the amount of Ph+ cells reinfused with the graft (P = 0.02). We conclude that this procedure is feasible, allowing the harvest of enough PBSC, some of them Ph- in patients who responded to IF-alpha, to allow autologous transplantation.  相似文献   

3.
Engraftment kinetics after high-dose chemotherapy (HDC) were evaluated in patients receiving autologous peripheral blood stem cell (PBSC) infusions with a low CD34+ cell content. Forty-eight patients were infused with < 2.5 x 10(6) CD34+ cells/kg; 36 because of poor harvests and 12 because they electively received only a fraction of their harvested cells. A median of 2.12 x 10(6) CD34+ cells/kg (range, 1.17-2.48) were infused following one of seven different HDC regimens. All patients achieved absolute neutrophil counts > or = 0.5 x 10(9)/l at a median of day 11 (range, 9-16). Forty-seven patients achieved platelet counts > or = 20 x 10(9)/l at a median of day 14 (range, 8-250). Nine of 47 (19%) had platelet recovery after day 21, 4/47 (9%) after day 100 and one died on day 240 without platelet recovery. Twenty-six patients (54%) died of progressive disease in 51-762 days; 22 (46%) are alive at a median of 450 days (range, 94-1844), 17 (35%) of whom are surviving disease-free at a median of 494 days (range, 55-1263). No patient died as a direct consequence of low blood cell counts. These data demonstrate that PBSC products containing 1.17-2.48 x 10(6) CD34+ cells/kg resulted in relatively prompt neutrophil recovery in all patients but approximately 10% had delayed platelet recovery.  相似文献   

4.
In this prospective trial, a total of 74 children who were scheduled to undergo high-dose chemotherapy followed by autologous peripheral blood stem cell transplantation (PBSCT) were prospectively randomized at diagnosis to evaluate the effectiveness of exogenous granulocyte colony-stimulating factor (G-CSF) treatment in accelerating hematopoietic recovery after PBSCT. The diagnosis included acute lymphoblastic leukemia (ALL) (n = 27), neuroblastoma (n = 29), and miscellaneous solid tumors (n = 18). Eligibility criteria included (1) primary PBSCT, (2) chemotherapy-responsive disease, and (3) collected cell number >1 x 10(5) colony-forming unit-granulocyte-macrophage (CFU-GM)/kg and >1 x 10(6) CD34(+) cells/kg patient's body weight. After applying the above criteria, 11 patients were excluded due to disease progression before PBSCT (n = 6) or a low number of harvested cells (n = 5), leaving 63 patients for analysis; 32 patients in the treatment group (300 microg/m2 of G-CSF intravenously over 1 hour from day 1 of PBSCT) and 31 in the control group without treatment. Two distinct disease-oriented high-dose regimens without total body irradiation consisted of the MCVAC regimen using ranimustine (MCNU, 450 mg/m2), cytosine arabinoside (16 g/m2), etoposide (1.6 g/m2), and cyclophosphamide (100 mg/kg) for patients with ALL, and the Hi-MEC regimen using melphalan (180 mg/m2), etoposide (1.6 g/m2), and carboplatinum (1.6 g/m2) for those with solid tumors. Five patients (two in the treatment group and three in the control group) were subsequently removed due to protocol violations. All patients survived PBSCT. The median numbers of transfused mononuclear cells (MNC), CD34(+) cells, and CFU-GM were, respectively, 4.5 (range, 1 to 19) x 10(8)/kg, 8.0 (1.1 to 25) x 10(6)/kg, and 3.7 (1.2 to 23) x 10(5)/kg in the treatment group (n = 30) and 2.9 (0.8 to 21) x 10(8)/kg, 6.3 (1.1 to 34) x 10(6)/kg, and 5.5 (1.3 to 37) x 10(5)/kg, respectively, in the control group (n = 28), with no significant difference. After PBSCT, the time to achieve an absolute neutrophil count (ANC) of >0.5 x 10(9)/L in the treatment group was less than that in the control group (median, 11 v 12 days; the log-rank test, P =.046), although the last day of red blood cell (RBC) transfusion (day 11 v day 10) and the duration of febrile days (>38 degrees C) after PBSCT (4 v 4 days) were identical in both groups. However, platelet recovery to >20 x 10(9)/L was significantly longer in treatment group than control group (26 v 16 days; P =.009) and >50 x 10(9)/L tended to take longer in the treatment group (29 v 26 days; P =.126), with significantly more platelet transfusion-dependent days (27 v 13 days; t-test, P =.037). When patients were divided into two different disease cohorts, ALL patients showed no difference in engraftment kinetics between the G-CSF treatment and control groups, while differences were seen in those with solid tumors. We concluded that the marginal clinical benefit of 1 day earlier recovery of granulocytes could be offset by the delayed recovery of platelets. We recommend that the routine application of costly G-CSF therapy in children undergoing PBSCT should be seriously reconsidered.  相似文献   

5.
PURPOSE: Peripheral blood stem cell (PBSC) apheresis provides an alternative to autologous marrow harvest as a source of hematologic stem cells for transplantation in children with solid tumors. PATIENTS AND METHODS: Eight children with metastatic or recurrent solid tumors underwent 27 apheresis procedures. Recovery from myelosuppressive chemotherapy occurred without continuous daily growth factor support prior to mobilization. Granulocyte colony stimulating factor (G-CSF) at 16 microgs/kg/day was used to increase stem cells in the peripheral circulation. CD 34 positive cells, mononuclear cells (MNC), and CFU-GM were measured in the apheresis products. Prior chemotherapy was examined as a clinical factor that affected PBSC yield. RESULTS: A significant correlation was found between CD 34+/kg and CFU-GM/kg of the products (r = 0.758, P < 0.001). Patients receiving cumulative doses of carboplatin over 1,600 mg/m2 produced adequate MNC (1 x 10(8)/kg) but yielded significantly less CD 34+ cells or CFU-GM than those patients receiving less carboplatin. Prior doses of etoposide and ifosfamide did not effect PBSC yield. CONCLUSIONS: The mobilization technique was well tolerated, and the products obtained produced trilineage engraftment in the patients that underwent peripheral blood stem cell transplantation. Peripheral blood stem cell apheresis in children can be optimized by selection of appropriate candidates and mobilization with G-CSF after an absence of hematopoietic growth factor support.  相似文献   

6.
In the use of autologous PBPC transplantation in patients with multiple myeloma, contamination of PBPC with myeloma cells is commonly observed. Enrichment for CD34+ cells has been employed as a method of reducing this contamination. In this study the reduction of myeloma cells in PBPC was accomplished by the positive selection of CD34+ cells using immunomagnetic bead separation (Isolex 300 system). PBPC were mobilized from 18 patients using cyclophosphamide (4.5 g/m2) and G-CSF (10 microg/kg/day). A median of two leukaphereses and one selection was performed per patient. The median number of mononuclear cells processed was 3.50 x 10(10) with a recovery of 1.11 x 10(8) cells after selection. The median recovery of CD34+ cells was 48% (range 17-78) and purity was 90% (29-99). The median log depletion of CD19+ cells was 3.0. IgH rearrangement, assessed by PCR, was undetectable in 13 of 24 evaluable CD34+ enriched products. Patients received 200 mg/m2 of melphalan followed by the infusion of a median of 2.91 x 10(6)/kg CD34+ cells (1.00-16.30). The median time to absolute neutrophil count >0.5 x 10(9)/l was 11 days, and sustained platelet recovery of >20 x 10(9)/l was 14 days. We conclude that immunomagnetic-based enrichment of CD34+ cells results in a marked reduction in myeloma cells without affecting engraftment kinetics.  相似文献   

7.
High-dose therapy with peripheral blood stem cell (PBSC) support is a frequently used treatment option in younger patients with poor prognosis histologically indolent (low-grade) non-Hodgkin's lymphoma (NHL), usually at the time of second or subsequent response to conventional-dose therapy. We have undertaken PBSC collection in 57 patients with histologically indolent NHL mobilized with either cyclophosphamide 1.5 g/m2 or the ESHAP regimen, followed by daily G-CSF. Progenitor cell yields were determined by quantification of CD34+ cells and GM-CFC. Twelve patients (21%) failed to achieve the minimum progenitor cell requirements of 1 x 10(6)/kg CD34+ cells or 1 x 10(5)/kg GM-CFC in their pooled harvests and 40 patients (70%) failed to achieve the optimal harvest thresholds of 3.5 x 10(6)/kg CD34+ cells or 3.5 x 10(5)/kg GM-CFC. This high failure rate is significantly higher than that in patients with histologically aggressive NHL or Hodgkin's disease. A multivariate analysis was performed to identify factors contributing to the low stem cell yields in this group. This identified the time interval from the last chemotherapy to the priming chemotherapy as the most important predictive factor. With respect to CD34 and GM-CFC numbers, on the single harvest on the day the white cell count first exceeded 5 x 10(9)/l the P values were 0.0078 and 0.0065, respectively, and for the progenitor cell values on the pooled harvests the P values were 0.004 for CD34+ cells and 0.015 for GM-CFC. Progenitor cell yields may therefore be improved in patients with low grade lymphoma by harvesting at diagnosis if no marrow disease is present, or by delaying mobilization for 6 months post-chemotherapy in patients in first or subsequent remission.  相似文献   

8.
PURPOSE: The optimal dose of granulocyte colony-stimulating factor (G-CSF) for mobilization of allogeneic-blood stem cells (AlloBSC) has yet to be determined. As part of a prospective trial, 41 related human leukocyte antigen (HLA)-matched donors had blood cells mobilized with G-CSF at 5 micrograms/kg/d by subcutaneous administration. The purpose of this trial was to monitor adverse effects during G-CSF administration and stem-cell collection, to determine the optimal timing for stem-cell collection, and to determine the cellular composition of stem-cell products following G-CSF administration. PATIENTS AND METHODS: The median donor age was 42 years. Apheresis began on day 4 of G-CSF administration. At least three daily 12-L apheresis collections were performed on each donor. A minimum of 1.0 x 10(6) CD34+ cells/kg (recipient weight) and 8.0 x 10(8) mononuclear cells/kg were collected from each donor. All collections were cryopreserved in 5% dimethyl sulfoxide and 6% hydroxyethyl starch. RESULTS: Toxicities associated with G-CSF administration and the apheresis process included myalgias/arthralgias (83%), headache (44%), fever (27%), and chills (22%). The median baseline platelet count of 242 x 10(4)/ mL decreased to 221, 155, and 119 x 10(6)/mL on days 4, 5, and 6 of G-CSF administration, respectively. Median numbers of CD34+ cells in collections 1, 2, and 3 were 1.99, 2.52, and 3.13 x 10(6)/kg, respectively. The percentage and total number of CD4+, CD8+, and CD56+/CD3- cells remained relatively constant during the three collections. Median total numbers of cells were as follows: CD34+, 7.73 x 10(6)/kg; and lymphocytes, 6.93 x 10(8)/kg. CONCLUSION: Relatively low doses of G-CSF can mobilize sufficient numbers of AlloBSC safely and efficiently.  相似文献   

9.
The purpose of the study was to evaluate the effect of delayed granulocyte colony-stimulating factor (G-CSF) use on hematopoietic recovery post-autologous peripheral blood progenitor cell (PBPC) transplantation. Patients were randomized to begin G-CSF on day +1 or day +7 post transplantation. Thirty-seven patients with lymphoma or myeloma undergoing high-dose therapy and autologous PBPC rescue were randomized to daily subcutaneous G-CSF beginning on day +1 or day +7 post-transplant. Patients < or =70 kg received 300 microg/day and >70 kg 480 microg/day. All patients were reinfused with PBPCs with a CD34+ cell count >2.0 x 10(6)/kg. Baseline characteristics of age, sex and CD34+ cell count were similar between the two arms, the median CD34+ cell count being 5.87 x 10(6)/kg in the day +1 group and 7.70 x 10(6)/kg in the day +7 group (P=0.7). The median time to reach a neutrophil count of >0.5 x 10(9)/l was 9 days in the day +1 arm and 10 days in the day +7 arm, a difference which was not statistically significant (P=0.68). Similarly, there was no difference in median days to platelet recovery >20000 x 10(9)/l, which was 10 days in the day +1 arm and 11 days in the day +7 arm (P=0.83). There was also no significant difference in the median duration of febrile neutropenia (4 vs 6 days; P=0.7), intravenous antibiotic use (7 vs 8 days; P=0.54) or median number of red blood cell transfusions (4 vs 7 units; P=0.82) between the two arms. Median length of hospital stay was 11 days post-PBPC reinfusion in both groups. The median number of G-CSF injections used was 8 in the day +1 group and 3 in the day +7 group (P < 0.0001). There is no significant difference in time to neutrophil or platelet recovery when G-CSF is initiated on day +7 compared to day +1 post-autologous PBPC transplantation. There is also no difference in number of febrile neutropenic or antibiotic days, number of red blood cell transfusions or length of hospital stay. The number of doses of G-CSF used per transplant is significantly reduced with delayed initiation, resulting in a significant reduction in drug costs. For patients with an adequately mobilized PBPC graft, the initiation of G-CSF can be delayed until day +7 post-PBPC reinfusion.  相似文献   

10.
We investigated peripheral blood progenitor cell (PBPC) mobilization by disease-specific chemotherapy in patients with metastatic soft tissue sarcoma (STS). Nine patients, five females and four males, aged 12-51 years, pretreated by one to nine courses of cytotoxic chemotherapy, underwent STS-specific mobilization followed by G-CSF at 5 microg/kg/day. PBPC were collected by 19 conventional-volume aphereses (8-12 l) with one to four procedures in individual patients. Leukaphereses started on median day 15 (range 13-18) from the first day of mobilization chemotherapy at medians of 25.8 x 10(3) WBC/microl (6.8-46.9), 3.5 x 10(3) MNC/microl (1.1-8.8), 122 x 10(3) platelets/microl (72-293) and 30.7 CD34+ cells/microl (6.7-207.8). Cumulative harvests resulted in medians of 4.6 x 10(8) MNC/kg (3.0-6.4), 2.9 x 10(6) CD34+ cells/kg (1.1-11.1) and 12.0 x 10(4) CFU-GM/kg (2.0-37.8). Eight patients underwent high-dose chemotherapy (HDCT) followed by PBPC rescue. Seven patients recovered hematopoiesis at medians of 12 days (8-15) for ANC >0.5 x 10(3)/microl and 14 days (8-27) for platelets >20 x 10(3)/microl. One patient, who received 1.6 x 10(6) CD34+ cells/kg, exhibited delayed ANC recovery on day +37 and failed to recover platelets until hospital discharge on day +55. We conclude that in patients with metastatic STS, who are pretreated by standard chemotherapy, PBPC can be mobilized by a further course of STS-specific chemotherapy plus G-CSF. One to four conventional-volume aphereses result in PBPC autografts that can serve as hematopoietic rescue for patients scheduled for HDCT.  相似文献   

11.
Many centers use CY and G-CSF to mobilize PBPC. In this study we explored whether a standard chemotherapy regimen consisting of mitoguazon, ifosfamide, MTX and etoposide (MIME) combined with G-CSF was capable of mobilizing PBPC in lymphoma patients. Twelve patients with Hodgkin's disease (HD) and 38 patients with non-Hodgkin's lymphoma (NHL) were mobilized with MIME/G-CSF. Most patients were heavily treated with different chemotherapy regimens receiving a median of 11 cycles (range 3 to 20) of chemotherapy prior to mobilization. It was found that the optimal time of PBPC harvest was at days 12 and 13 after initiating the mobilization regimen. The median number of collected CD34+ cells per kg body weight was 7.1 x 10(6) (range 0.5-26.2). More than 2.0 x 10(6) CD34+ cells/kg were achieved in 69% of the patients after one apheresis. When additional cycles of apheresis were done, only 6% failed to harvest this number of CD34+ cells. There was a statistically significant inverse correlation between the number of prior chemotherapy cycles and CD34+ cell yield (P = 0.003). No such association was found between CD34+ cell yield and prior radiotherapy. When MIME/G-CSF was compared with Dexa-BEAM/G-CSF, it was found that MIME/G-CSF tended to be more efficient in mobilizing PBPC in spite of being less myelotoxic. All patients transplanted with MIME/G-CSF mobilized PBPC had fast and sustained engraftment. These results demonstrate that an ordinary salvage chemotherapy regimen, such as MIME combined with G-CSF can be successfully used to mobilize PBPC.  相似文献   

12.
The CD34 antigen is expressed by human hematopoietic progenitor and stem cells. These cells are capable of reconstituting marrow function after marrow-ablative chemo-radiotherapy. Several different technologies have been developed for the separation of CD34+ cells from bone marrow or peripheral blood stem cell (PBSC) components. We used an immunomagnetic separation technique to enrich CD34+ cells from PBSC components in anticipation of autologous transplantation for patients with B lymphoid malignancies. Twenty-nine patients enrolled on this study and received mobilization chemotherapy followed by G-CSF. Of these, 21 achieved a peripheral blood CD34+ cell level of at least 2.0 x 10(4)/l required by protocol for separation of the stem cell components. A median of three components per patient was collected for processing. The average CD34+ cell concentration in the components after apheresis was 1.0 +/- 1.2%. After the CD34+ cell selection, the enriched components contained 0.6 +/- 0.6% of the starting nucleated cells. The recovery of CD34+ cells, however, averaged 58.4 +/- 19.2% of the starting cell number, with a purity of 90.8 +/- 6.5%. Overall depletion of CD34- cells was 99.96 +/- 0.06%. Nineteen patients were treated with marrow-ablative conditioning regimens and received an average of 6.2 +/- 2.0 x 10(6) CD34+ cells/kg body weight. These patients recovered to an ANC >0.5 x 10(9)/l at a median of 11 days (range 8-14), and platelet transfusion independence at a median of 9 days (range 5-13). Four patients died of transplant-related complications or relapse before 100 days after transplantation. No patient required infusion of unseparated cells because of failure of sustained bone marrow function. These data demonstrate that peripheral blood-derived CD34+ cells enriched by use of an immunomagnetic separation technique are capable of rapid engraftment after autologous transplantation.  相似文献   

13.
Unfractionated peripheral blood stem cell (PBSC) grafts contain measurable quantities of myeloma cells and are therefore a potential source of relapse posttransplantation. In contrast, fluorescence-activated cell sorting (FACS)-sorted CD34+ Thy1+ Lin- peripheral blood cells are substantially enriched for stem cell activity, yet contain virtually no clonal myeloma cells. A study was performed in patients with symptomatic myeloma, who had received 12 months or less of preceding standard chemotherapy, to evaluate the feasibility of large scale purification of primitive hematopoietic stem cells in order to study engraftment kinetics posttransplantation and the degree of tumor cell contamination of this cell population, based on polymerase chain reaction (PCR) analysis for the patient-specific complementarity-determining region III (CDR III). PBSC were mobilized with high dose cyclophosphamide and granulocyte-macrophage colony-stimulating factor (GM-CSF). A combination of elutriation and chemical lysis was used to deplete PBSC collections of monocytes, granulocytes, erythrocytes, and platelets. Subsequently, CD34+ Thy1+ Lin- progenitor cells were purified with high speed cell sorting. Of the 10 evaluable patients, nine met the required minimum criteria of >/=7.2 x 10(5) cells/kg to support tandem transplants. After high dose melphalan (200 mg/m2) eight engrafted successfully, although granulocyte (absolute neutrophil count [ANC] >0.5 x 10(9)/L, 16 days) and platelet recovery (platelets > 50 x 10(9)/L, 39 days) was substantially delayed when compared with unmanipulated PBSC grafts; one patient required infusion of a reserve graft because of lack of evidence of engraftment by day +28. Three patients proceeded to a second graft with high dose melphalan and total body irradiation; two required infusion of a reserve graft and both died of infectious complications; one showed delayed, but complete, engraftment after this myeloablative regimen. Two of the nine evaluable patients attained a clinical complete remission (CR). The grafts from three patients were tested for tumor contamination and contained no detectable clonal myeloma cells. Larger quantities of purified cells may be required to resolve the problem of delayed engraftment.  相似文献   

14.
The effects of both daily G-CSF administration and subsequent peripheral blood progenitor cell collection (PBPCC) by apheresis on 20 healthy adult donors were studied. All received daily G-CSF (filgrastim) 10 micrograms/kg for 5-7 days by subcutaneous injection. G-CSF administration was well tolerated, except for moderate bone pain and headache. Peak values of CD34+ cells were observed on days 5 (n = 12) or 6 (n = 8). In all donors a significant increase in CD3+, CD4+, CD8+, CD19+, and NK cells was observed on day 5 in relation to the baseline values. CD4/CD8 lymphocyte ratio was unmodified by G-CSF. None of the donors required a central venous line for PBPCC. Immediately after PBPCC, a platelet count below 100 x 10(9)/1 was observed in nine of 18 cases, although in all donors platelet counts were over 100 x 10(9)/1 7 days later. A lymphocytopenia on day 7 following PBPCC was observed, although there was a tendency to achieve baseline values 30-90 days after the procedure. Mean numbers ( +/- SD) of collected cells x 10(6)/kg after a median of two (1-4) apheresis sessions and a median of 20 1 (10-40) processed were: CD34+ 5.5 ( +/- 2.3), CD3+ 326 ( +/- 105), CD4+ 207 ( +/- 64), CD8+ 164 ( +/- 60), CD19+ 88 ( +/- 32), and NK cells 32 ( +/- 14). We conclude that G-CSF administration to healthy donors is a well-tolerated procedure which is associated with (a) obtaining a high number of hematopoietic progenitor cells, and (b) a significant increase in T, B, and NK cells in donors' blood. In addition, PBPCC by apheresis results in a moderate, rapidly reversible, and clinically irrelevant thrombocytopenia and a moderate lymphocytopenia, which tends to resolve within 3 months following the procedure.  相似文献   

15.
In this article, we review neoplastic contamination in the peripheral blood (PB) of patients with multiple myeloma (MM) upon stem cell mobilization. We first evaluated PB samples from pretreated MM patients following administration of high-dose cyclophosphamide (Cy, 7 g/m2 or 4 g/m2) and granulocyte colony-stimulating factor (G-CSF) for the presence of myeloma cells as well as hematopoietic progenitors. Plasma cells containing intracytoplasmic immunoglobulin (cIg) were counted by immunofluorescence microscopy after incubation with appropriate antisera against light and heavy chain Ig. Flow cytometry studies were performed to determine the presence of malignant B lineage elements, using monoclonal antibodies against the CD19 antigen and the monotypic light chain. Prior to PBSC mobilization, circulating plasma cells were detected in all MM patients at 0.1%-1.8% of the mononuclear cell (MNC) fraction (mean value 0.7 +/- 0.4% SD). In these patients, a higher absolute number of PB neoplastic cells was detected after administration of chemotherapy and G-CSF. Kinetic analysis showed a pattern of tumor cell mobilization similar to that of normal hematopoietic progenitors, with the peak coinciding with the optimal period for the collection of PBSC. The absolute number of plasma cells showed a 10-50-fold increase over the baseline value. Apheresis products contained 0.7 +/- 0.2% SD myeloma cells (range 0.2%-2.7%), which demonstrated the capacity of plasma cells to proliferate, differentiate, and mature in response to c-kit ligand (SCF), IL-3, IL-6, and a combination of IL-3 and IL-6. Subsequently, in an attempt to reduce tumor cell contamination prior to autologous transplantation, circulating hematopoietic CD34+ cells were highly enriched by avidin-biotin immunoabsorption, cryopreserved, and used to reconstitute bone marrow (BM) function after myeloablative therapy in 13 patients. The median purity of the enriched CD34+ cell population was 89.5% (range 51%-94%), with a 75-fold enrichment compared with the pretreatment samples. The median overall recovery of CD34+ cells and CFU-GM was 58% (range 33%-95%) and 45% (range 7%-100%), respectively. Positive selection of CD34+ cells resulted in 2.5-3 log depletion of plasma cells and CD 19+ B lineage cells as determined by immunofluorescence studies, although DNA analysis of the CDR III region of the IgH gene demonstrated the persistence of minimal residual disease (MRD) in 5 of 6 patient samples studied. Myeloma patients were reinfused with enriched CD34+ cells after myeloablative therapy consisting of total body irradiation (TBI, 1000 cGy) and high-dose melphalan (140 mg/m2) or melphalan (200 mg/m2) alone. They received a median of 5 x 10(6) CD34+ cells/kg and showed a rapid reconstitution of hematopoiesis. The median time to 0.5 x 10(9) neutrophils, 20 x 10(9) and 50 x 10(9) platelets/L of PB was 10, 11, and 12 days, respectively. These results, as well as other clinically significant parameters, did not significantly differ from those of patients (n = 13) receiving unmanipulated PBSC following the same pretransplant conditioning regimen. Our data demonstrate the concomitant mobilization of tumor cells and hematopoietic progenitors in the PB of MM patients. Positive selection of CD34+ cells reduces the contamination of myeloma cells from the apheresis products up to 3 log and provides a cell suspension capable of restoring normal hematopoiesis following a TBI-containing conditioning regimen.  相似文献   

16.
In order to determine if peripheral blood stem cells (PBSC) collected after priming with G-CSF in AML in first complete remission (CR) can be used for autologous transplantation and to evaluate the efficacy of early intensification therapy as in vivo purging, we studied 35 consecutive patients with AML in first CR. After standard induction and consolidation chemotherapy, 24 of them were treated with one (10 patients) or two (14 patients) cycles of high-dose cytarabine plus etoposide prior to PBSC collection. G-CSF was used as the priming agent. Of the 35 patients scheduled for peripheral blood stem cell transplantation (PBSCT), three relapsed before transplantation, and the 32 remaining underwent PBSCT. High-dose therapy consisted of either total body irradiation plus cyclophosphamide or busulphan plus cyclophosphamide. The median number of CD34+ cells infused was 3.24 x 10(6)/kg (range 0.15-14). The median times to reach a PMN count of 0.5 x 10(9)/l and a platelet count of 50 x 10(9)/l were 12 (8-28) and 30 (11-345) days, respectively. There was no transplant-related mortality. Twelve patients relapsed between 2 and 21 months post-PBSCT. With a median follow-up of 28 months, actuarial disease-free survival (DFS) is 52.41 +/- 9% in the intent-to-treat group and 57.4 +/- 9.8% in patients who underwent PBSCT. The probability of DFS is significantly higher for patients who receive early intensification therapy prior to both PBSC collection and PBSCT as compared with patients that do not: 68.8 +/- 10.27% vs 35.5 +/- 12.6%, P = 0.0418. These results indicate the feasibility of PBSCT in AML using G-CSF-mobilized PBSC. The use of intensification treatment as 'purging in vivo' prior both to collection of PBSC and PBSCT significantly reduces the risk of relapse in this group of patients.  相似文献   

17.
Many studies have documented faster engraftment after transplantation with peripheral blood stem cells (PBSC) compared to bone marrow (BM) stem cells. Most comparisons, however, have been between unprimed BM and primed PBSC. We have collected engraftment data on 39 patients from 4 Danish centres and compared G-CSF primed BM with G-CSF primed PBSC in malignant lymphoma and solid tumours. In the lymphoma group 6 BM transplants were compared with 8 PBSC transplants, whereas in the testicular cancer group 16 BM transplants were compared with 9 PBSC transplants. In the lymphoma group, the time to platelet engraftment (platelets >20x10(9)/l unsupported) was median 15 d in PBSC transplants and median 34 d in BM transplants (p=0.003). In the solid tumour patients the difference in time to platelet engraftment was 11 and 18 d in PBSC and BM transplants, respectively (p<0.0001). In an attempt to explain this difference we performed CD34+ subset analysis of BM and PBSC. This analysis revealed a higher content of lineage restricted cells (CD34+CD61+ and CD34+GlyA+) in PBSC compared to BM. In conclusion, G-CSF mobilized PBSC seems to result in faster engraftment than G-CSF primed BM, which could be explained by an increased number of lineage specific progenitors in PBSC compared to BM.  相似文献   

18.
Endogenous production of granulocyte colony-stimulating factor (G-CSF), macrophage CSF (M-CSF), granulocyte-macrophage CSF (GM-CSF), interleukin-3 (IL-3), and interleukin-6 (IL-6) was investigated in 10 children who underwent a total of 12 courses of autologous peripheral blood stem cell transplant (PBSCT) by measuring their serum levels using immunoassay kits. The serum G-CSF level increased immediately following infusion of PBSC graft, peaked between days 3 and 7 posttransplant and then declined by the time the granulocyte count rose. No definitive association was found between the continuous high levels of G-CSF and infective episodes, the number of infused nucleated cells, monocytes, CFU-GM, or the number of days required to achieve greater than 0.5 x 10(9)/L granulocyte, greater than 1.0 x 10(9)/L leukocyte, or greater than 50 x 10(9)/L platelet counts. After PBSCT, IL-6 levels tended to be elevated. No detectable serum level of GM-CSF or IL-3 (< 50 pg/mL) was observed before PBSCT and 4 patients showed a transient increase in the GM-CSF level after PBSCT. No significant change was observed in the post-transplant serum levels of IL-3 or M-CSF. The role of endogenously secreted cytokines in early hematopoietic recovery after PBSCT needs further clarification, but, at present, routine use of exogenous G-CSF therapy is not recommended.  相似文献   

19.
Gene therapy is becoming one of the most promising modalities for the treatment of acquired immunodeficiency syndrome. The purpose of this study was to investigate the mobilization and collection of peripheral blood progenitor cells from human immunodeficiency virus (HIV)-infected individuals using granulocyte colony-stimulating factor (G-CSF). A total of 10 patients (9 male, 1 female; median age 36.5 years) with varying circulating CD4+ cell counts (13.9-1467/microL) were administered 10 microg/kg G-CSF daily for 6 days. Peripheral white blood cells (WBCs), CD34+ cell counts, lymphocyte subsets, and plasma viremia were monitored before each G-CSF injection. An average sixfold increase in WBCs was observed, which stabilized on day 4 or thereafter. The level of CD34+ cells was increased by 20-fold, and did not differ between days 5 and 6. Smaller increases in CD4+, CD8+, and CD4+CD8+ cells were observed. HIV viral load, as measured by RNA copy number in plasma, was not significantly altered by G-CSF administration. The leukapheresis product (LP), collected on day 7, contained an average of 6.25+/-4.52 (mean +/- standard deviation) x 10(10) WBCs and 3.08+/-2.98 x 10(6) CD34+ cells/kg. The levels of different CD34+ cell subsets were similar to those in the LPs of G-CSF-mobilized healthy individuals from an earlier study. Primitive hematopoietic cells (CD38- and CD38-HLA-DR+ cells) were detected in LPs (1.19+/-0.46% and 0.87+/-0.23%, respectively, of CD34+ cells). All parameters (WBC counts, lymphocyte populations, CD34+ cells, and HIV-1 RNA copies) measured 3 weeks after leukapheresis returned to baseline values. The administration of G-CSF was well tolerated by the HIV patients; side effects included bone pain, headache, flulike symptoms, and fatigue. There were no correlations between baseline CD4+ cell count and the WBCs, mononuclear cells, or CD34+ cells collected in the LP. Similarly, no correlation existed between baseline CD4+ and CD34+ cells, peak CD34+ cells, or days to achieve peak CD34+ cell counts after G-CSF mobilization. Our results showed that: (1) maximal mobilization can be achieved after 4 days of G-CSF administration; (2) therapeutic quantities of hematopoietic cells can be collected and used for gene therapy; and (3) G-CSF administration is well tolerated and does not cause a clinically significant increase in viremia.  相似文献   

20.
The maximum tolerated dose (MTD) of etoposide and carboplatin without growth factor support was previously defined by Cancer and Leukemia Group B (CALGB) as 200 and 125 mg/m2/day x 3, respectively, given every 28 days to previously untreated patients who have extensive, small-cell lung cancer (SCLC). Myelosuppression was dose-limiting. The purpose of this phase I trial was to determine if granulocyte macrophage colony-stimulating factor (GM-CSF) support allows the dosage of the combination of etoposide and carboplatin to be increased above the previously determined MTD. In this CALGB study of 44 evaluable patients with performance status 0-2, cohorts were treated with etoposide and carboplatin given intravenously on days 1-3 followed by GM-CSF (molgramostim) given subcutaneously on days 4-18. Four dose levels of bacteria-derived recombinant GM-CSF (5, 10, 20 microg/kg/day and 5 microg/kg every 12 h), three dose levels of etoposide (200, 250, and 300 mg/m2/day x 3), and two dose levels of carboplatin (125 and 150 mg/m2/day x 3) were evaluated. There was no chemotherapy dose escalation in individual patients. With 5 microg/kg/d GM-CSF, the first etoposide and carboplatin cycle of 300 and 150 mg/m2/day x 3, respectively, could be administered with acceptable toxicity. However, GM-CSF did not allow repeated administration of this dose-escalated regimen every 21 days, since delayed platelet and/or neutrophil recovery was dose limiting in later cycles. These results demonstrate that GM-CSF alone has limited capability to support the repeated administration of high doses of etoposide and carboplatin. CALGB currently is testing the ability of interleukin (IL)-6 given with GM-CSF to ameliorate the cumulative myelosuppression of this intense regimen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号