首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The first type III module of fibronectin (Fn) contains a cryptic site that binds Fn and its N-terminal 29 kDa fragment and is thought to be important for fibril formation (Morla, A., Zhang, Z., and Ruoslahti, E. (1994) Nature 367, 193-196; Hocking, D. C., Sottile, J. , and McKeown-Longo, P. J. (1994) J. Biol. Chem. 269, 19183-19191). A synthetic 31-mer peptide (NAPQ ... TIPG) derived from the middle of domain III1 was also shown to bind Fn, but the site of its interaction was not determined (Morla, A., and Ruoslahti, E. (1992) J. Cell Biol. 118, 421-429). By affinity chromatography on peptide-agarose, we tested a set of fragments representing the entire light chain of plasma Fn. Only 40-kDa Hep-2 (III12-15) failed to bind. The concentration of urea required for peak elution of Fn and the other fragments decreased in the order Fn > 42-kDa GBF (I6II1-2I7-9) > 19-kDa Fib-2 (I10-12) > 110-kDa CBF(III2-10) > 29-kDa Fib-1 (I1-I5). Neither Fn nor any of the fragments bound immobilized intact III1, confirming the cryptic nature of this activity. In an effort to detect interactions between other Fn domains, all fragments were coupled to Sepharose, and each fragment was tested on each affinity matrix before and after denaturation. The only interaction detected was that of fluid phase III1 with immobilized denatured 110-kDa CBF and 40-kDa Hep-2, both of which contain type III domains. Analysis of subfragments revealed this activity to be dominated by domains III7 and III15. Fn itself did not bind to the denatured fragments. Thus, domain III1 contains two cryptic "self-association sites," one that is buried in the core of the fold but recognizes many Fn fragments when presented as a peptide and another that is concealed in Fn but exposed in the native isolated domain and recognizes cryptic sites in two other type III domains. These interactions between type III domains could play an important role in assembly of Fn multimers in the extracellular matrix.  相似文献   

2.
DNA gyrase is the target of the coumarin group of antibacterial agents. The drugs are known to inhibit the ATPase activity of gyrase and bind to the 24-kDa N-terminal subdomain of gyrase B protein. Supercoiling assays with intact DNA gyrase and ATPase assays with a 43-kDa N-terminal fragment of the B protein suggest that the drugs bind tightly, with Kd values <10(-7) M. In addition, the ATPase data suggest that 1 coumermycin molecule interacts with 2 molecules of the 43-kDa protein while the other coumarins form a 1:1 complex. This result is confirmed by cross-linking experiments. Rapid gel-filtration experiments show that the binding of ADPNP(5'-adneylyl beta,gamm-imidodiphosphate) and coumarins to the 43-kDa protein is mutally exclusive, consistent with a competitive mode of action for the drugs. Rapid gel-filtration binding experiments using both the 24-and 43-kDa proteins also show that the drugs bind with association rate constants of >10(5) M-1.s-1, and dissociation rate constants of approximately 3x10(-3)s-1 and approximately 4x10(-3)s-1 for the 43-and 24-kDa proteins, respectively. Titration calorimetry shows that the Kd values for coumarins binding to both proteins are approximately 10-8M and that binding is enthalpy driven.  相似文献   

3.
The amount of cell surface fibronectin (Fn)-binding protein (FnBP) adhesin expressed by Staphylococcus aureus is maximal during exponential growth but disappears rapidly as the culture progresses into stationary phase. To identify factors responsible for the loss of cell surface FnBP, a culture of S. aureus L170, which shows high levels of Fn binding, was supplemented at the time of inoculation with concentrated stationary-phase supernatant from S. aureus L530, a strain which binds Fn poorly. The resulting exponential-phase cells were devoid of FnBP. The factor responsible for this activity was purified from the culture supernatant and identified as V8 protease. When cultured with 375 ng of exogenous V8 protease ml(-1), exponential-phase cells of S. aureus L170 were devoid of cell surface FnBP, and concentrations as low as 23 ng x ml(-1) resulted in reduced amounts of FnBP. Addition of the protease inhibitor alpha2-macroglobulin to the culture medium prevented the growth-phase-dependent loss of cell surface FnBP, whereas growth with exogenous V8 protease resulted in reduced adherence to the solid-phase N-terminal fragment of Fn and to the extracellular matrix synthesized by fetal rabbit lung fibroblasts. Although FnBP was extremely sensitive to V8 protease, exogenous protease did not exert a significant influence on the amount of cell surface protein A. However, a limited number of other high-molecular-weight cell surface proteins were also sensitive to V8 protease. Therefore, both the adhesive phenotype and cell surface protein profile of S. aureus can be modified by V8 protease activity.  相似文献   

4.
The low density lipoprotein receptor-related protein (LRP), a member of the low density lipoprotein receptor gene family, mediates the cellular uptake of a diversity of ligands. A folding chaperone, the 39-kDa receptor-associated protein (RAP) that resides in the early compartments of the secretory pathway inhibits the binding of all ligands to the receptor and may serve to prevent premature binding of ligands to the receptor during the trafficking to the cell surface. To elucidate the molecular interactions that underlie the interplay between the receptor, RAP, and the ligands, we have analyzed and delineated the binding sites of plasminogen activator inhibitor-1 (PAI-1), tissue-type plasminogen activator (t-PA).PAI-1 complexes, RAP, and the anti-LRP Fab fragment Fab A8. To that end, we have generated a series of soluble recombinant fragments spanning the second cluster of complement-type repeats (C3-C10) and the amino-terminal flanking epidermal growth factor repeat (E4) of LRP (E4-C10; amino acids 787-1165). All fragments were expressed by stably transfected baby hamster kidney cells and purified by affinity chromatography. A detailed study of ligand binding to the fragments using surface plasmon resonance revealed the presence of three distinct, Ca2+-dependent ligand binding sites in the cluster II domain (Cl-II) of LRP. t-PA.PAI-1 complexes as well as PAI-1 bind to a domain located in the amino-terminal portion of Cl-II, spanning repeats E4-C3-C7. Adjacent to this site and partially overlapping is a high affinity RAP-binding site located on repeats C5-C7. Fab A8, a pseudo-ligand of the receptor, binds to a third Ca2+-dependent binding site on repeats C8-C10 at the carboxyl-terminal end of Cl-II. Next, we studied the RAP-mediated inhibition of ligand binding to LRP and to Cl-II. As expected, we observed a strong inhibition of t-PA.PAI-1 complex and Fab A8 binding to LRP by RAP (IC50 congruent with 0.3 nM), whereas in the reverse experiment, competition of t-PA. PAI-1 complexes and Fab A8 for RAP binding to LRP could only be shown at high concentrations of competitors (>/=1 microM). Interestingly, even though the equilibrium dissociation constants for the binding of RAP to LRP and to Cl-II are similar, the binding of the ligands to Cl-II is only prevented by RAP at concentrations that are at least 2 orders of magnitude higher than those required for inhibition of ligand binding to LRP. Our results favor models that propose RAP-induced allosteric inhibition of ligand binding to LRP that may require LRP moieties that are located outside Cl-II of the receptor.  相似文献   

5.
During apoptosis, DNA undergoes fragmentation and caspase-3 cleaves poly(ADP-ribose) polymerase (PARP) into both a 24-kDa fragment containing the DNA binding domain and an 89-kDa fragment containing the catalytic and automodification domains. Atomic force microscopy revealed that recombinant full-length PARP bound to plasmid DNA fragments and linked them into chainlike structures. Automodification of PARP in the presence of NAD+ resulted in its dissociation from the DNA fragments, which, nevertheless, remained physically aligned. A recombinant 28-kDa fragment of PARP containing the DNA binding domain but lacking the automodification domain irreversibly bound to and linked DNA fragments in the absence or presence of NAD+. Identical results were obtained on incubation of internucleosomal DNA fragments from apoptotic cells with the products of cleavage of recombinant PARP by purified caspase-3. The 24-kDa product of PARP cleavage by caspase-3 may contribute to the irreversibility of apoptosis by blocking the access of DNA repair enzymes to DNA strand breaks.  相似文献   

6.
To investigate the role of each domain in BiP/GRP78 function, we have used a full-length recombinant BiP engineered to contain two enterokinase sites; one site is located after an N-terminal FLAG epitope, and a second site has been inserted at the junction between the N- and C-terminal domains (FLAG-BiP.ent). FLAG-BiP.ent oligomerizes into multiple species that interconvert with each other in a slow, concentration- and temperature-dependent equilibrium. Binding of ATP or AMP-PNP (adenosine 5'-(beta, gamma-imino)triphosphate), but not ADP, or of a peptidic substrate induces depolymerization of FLAG-BiP.ent and stabilization of monomeric species. Enterokinase cleavage of monomeric, nucleotide-free BiP.ent results in the physical dissociation of the 44-kDa N-terminal ATPase fragment (N44.ent) from the 30-kDa C-terminal substrate binding domain (C30.ent). Upon dissociation, the freed C-terminal substrate binding domain readily undergoes self-association while N44.ent remains monomeric. Enterokinase cleavage performed in the presence of a synthetic peptide prevents oligomerization of the freed C30.ent domain. Addition of ATP during enterokinase cleavage has no effect on C30.ent oligomerization. Our data clearly indicate that binding of a specific peptide onto the C-terminal domain, or ATP onto the N-terminal domain, induces internal conformational change(s) within the C30 domain that result(s) in BiP depolymerization.  相似文献   

7.
G-DNA, a polymorphic family of four-stranded DNA structures, has been proposed to play roles in a variety of biological processes including telomere function, meiotic recombination and gene regulation. Here we report the purification and cloning of TGP1, a G-DNA specific binding protein from Tetrahymena thermophila. TGP1 was purified by three-column chromatographies, including a G-DNA affinity column. Two major proteins (approximately 80 and approximately 40 kDa) were present in the most highly purified column fraction. Renaturation experiments showed that the approximately 80 kDa protein contains TGP1 activity. Biochemical characterization showed that TGP1 is a G-DNA specific binding protein with a preference for parallel G-DNAs. The TGP1/DNA complex has a dissociation constant (Kd) of approximately 2.2 x 10(-8) M and TGP1 can form supershift in gel mobility shift assays. The cDNA coding TGP1 was cloned and sequenced based upon an internal peptide sequence obtained from the approximately 80 kDa protein. Sequence analyses showed that TGP1 is a basic protein with a pI of 10.58, and contains two extensively hydrophilic and basic domains. Homology searches revealed that TGP1 is a novel protein sharing weak similarities with a number of proteins.  相似文献   

8.
Nereis sarcoplasmic calcium-binding protein (NSCP) is a compact 20-kDa protein that competitively binds three Ca2+ or Mg2+ ions and displays strong positive cooperativity. Its three-dimensional structure is known. It thus constitutes a good model for the study of intramolecular information transduction. Here we probed its domain structure and interaction between domains using fragments obtained by controlled proteolysis. The metal-free form, but not the Ca2+ or Mg2+ form, is sensitive to trypsin proteolysis and is preferentially cleaved at two peptide bonds in the middle of the protein. The N-terminal fragment 1-80 (T1-80) and the C-terminal fragment 90-174 (T90-174) were purified to electrophoretic homogeneity. T1-80, which consists of a paired EF-hand domain, binds one Ca2+ with Ka = 3.1 x 10(5) M-1; entropy increase is the main driving force of complex formation. Circular dichroism indicates that T1-80 is rich in secondary structure, irrespective of the Ca2+ saturation. Ca2+ binding provokes a difference spectrum which is similar to that observed in the intact protein. These data suggest that this N-terminal domain constitutes the stable structural nucleus in NSCP to which the first Ca2+ binds. T90-174 binds two Ca2+ ions with Ka = 3.2 x 10(4) M-1; the enthalpy change contributes predominantly to the binding process. Metal-free T90-174 is mostly in random coil but converts to an alpha-helical-rich conformation upon Ca2+ binding. Ca2+ binding to T1-80 provokes a red-shift and intensity decrease of the Trp fluorescence but a blue-shift and intensity increase in T90-174.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Two hybrid plasminogen activators (K2tu-PA and FK2tu-PA), linking the kringle 2 domain or the finger plus the kringle 2 domains of tissue-type plasminogen activator (t-PA) to the catalytic domain of single-chain urokinase-type plasminogen activator (scu-PA) were studied. At variance with similar constructs previously reported, they were obtained by fusion of the t-PA and scu-PA derived portions at their plasmin cleavage site (between Arg275 of t-PA and Ile159 of scu-PA), thus eliminating from scu-PA the two peptide bonds (Glu143-Leu144 and Arg156-Phe157) that lead to low molecular weight scu-PA and to thrombin-inactivated tcu-PA. The specific activities of K2tu-PA and FK2tu-PA, as measured by fibrin plate were 2.5 x 10(6) and 1.0 x 10(6) t-PA equivalent units/mg, respectively. Activation of plasminogen by hybrid PAs was stimulated by both CNBr-digested fibrinogen (40- and 80-fold) and Des-A-fibrin monomers (6- and 12-fold). The relatively weak stimulation of chimeric PAs by minimally degraded fibrin monomers was consistent with their reduced fibrin binding capacity. Like scu-PA, the chimeric PAs, in the single-chain form, were insensitive to inhibition, as they retained full activity after prolonged incubation in plasma and did not interact with SDS-reactivated recombinant PAI-1. The concentration producing 50% lysis of blood clots in 3 h was 0.5 microgram/ml for K2tu-PA and 1 microgram/ml for FK2tu-PA, as compared to 0.5 microgram/ml and > 2 micrograms/ml for t-PA and scu-PA, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The transmembrane PTPase HPTP beta differs from its related family members in having a single rather than a tandemly duplicated cytosolic catalytic domain. We have expressed the 354-amino acid, 41-kDa human PTP beta catalytic fragment in Escherichia coli, purified it, and assessed catalytic specificity with a series of pY peptides. HPTP beta shows distinctions from the related LAR PTPase and T cell CD45 PTPase domains: it recognizes phosphotyrosyl peptides of 9-11 residues from lck, src, and PLC gamma with Km values of 2, 4, and 1 microM, some 40-200-fold lower than the other two PTPases. With kcat values of 30-205 s-1, the catalytic efficiency, kcat/Km, of the HPTP beta 41-kDa catalytic domain is very high, up to 5.7 x 10(7) M-1 s-1. The peptides corresponding to PLC gamma (766-776) and EGFR (1,167-1,177) phosphorylation sites were used for structural variation to assess pY sequence context recognition by HPTP beta catalytic domain. While exchange of the alanine residue at the +2 position of the PLC gamma (Km of 1 microM) peptide to lysine or aspartic acid showed little or no effect on substrate affinity, replacement by arginine increased the Km 35-fold. Similarly, the high Km value of the EGFR pY peptide (Km of 104 microM) derives largely from the arginine residue at the +2 position of the peptide, since arginine to alanine single mutation at the -2 position of the EGFR peptide decreased the Km value 34-fold to 3 microM. Three thiophosphotyrosyl peptides have been prepared and act as substrates and competitive inhibitors of these PTPase catalytic domains.  相似文献   

11.
The reactivity with and affinity for thrombomodulin (TM) of monoclonal anti-cardiolipin Abs (MoaCL), derived from a New Zealand Black x New Zealand White F1 (NZB/W F1) mouse, were studied to investigate the pathogenicity of anti-cardiolipin Abs (aCL). Four of eighteen MoaCL were found to react with rabbit TM when examined using ELISA. These four MoaCL also reacted with synthetic peptide that included the epidermal growth factor-like domain of human TM, a binding site for thrombin. The reaction with TM of these four MoaCL was inhibited by bovine thrombin. When the affinity for TM of the MoaCL was determined, the dissociation constants (Kd) ranged from 4.8 x 10(-9) to 4.7 x 10(-8) M. By contrast, examination of the affinity for cardiolipin (CL) gave values from 8.3 x 10(-6) to 7.4 x 10(-5) M. Thus, these MoaCL reacted to TM with a higher affinity than to CL. Moreover, these MoaCL also bound to TM on HUVEC and down-regulated the expression level of TM on the surface of HUVEC due to internalization of TM. The binding of thrombin to TM is known to initiate rapid protein C activation, and complexes of activated protein C and protein S show anticoagulatory activity. Thus, the present studies suggest that certain pathogenic aCL cross-react with TM and induce down-regulation of TM on endothelial cells, followed by induction of thrombosis.  相似文献   

12.
beta-(2-Hydroxyethoxy)-5 alpha-cholest-8(14)-en-15-one, a synthetic inhibitor of cholesterol biosynthesis, was shown to exhibit a high affinity to oxysterol binding protein. This was proved by ultracentrifugation of the protein fraction from rabbit liver in the presence of the 3H-labeled inhibitor, 3 beta-(2-hydroxy-2-[3H]ethoxy)-5 alpha-cholest-8(14)-en-15-one, or by the substitution of the [3H]-25-hydroxycholesterol in its complex with the oxysterol binding protein. In human hepatoma Hep G2 cells, the inhibitor decreased activity of 3-hydroxy-3-methylglutaryl CoA reductase [ID50 (2.7 +/- 0.7) x 10(-5) M] and was transformed into 3 beta-[2-(9-Z-octadecenoyloxy)ethoxy]-5 alpha-cholest-8(14)-en-15-one.  相似文献   

13.
An eucaryotic recombinant human growth hormone binding protein (rGHBP) was expressed in baculovirus-infected insect cells and purified by affinity chromatography from culture supernatant. This mannose-rich 34-kDa protein specifically bound human growth hormone (hGH) with the same affinity (kDa = 0.42 x 10(-9) M) than the 51.5 kDa GHBP we purified and characterised from human plasma (kDa = 1.1 x 10(-9) M). A high molecular form of the rGHBP was detected by silver-stained SDS-PAGE, Western blot (mAb 263), affinity cross-linking and Western ligand blot with 125I-hGH. Reduction experiments with beta-mercaptoethanol suggested that this form involved a disulfide bound between two rGHBPs.  相似文献   

14.
We previously reported that a macrophage response that increased binding to 125I-radiolabeled soluble denatured collagen (gelatin) was induced by preincubation of macrophage with a 70-kDa amino-terminal fibronectin fragment and soluble nonlabeled gelatin [S. F. Penc, F. A. Blumenstock, J. E. Kaplan (1995) J. Leukoc. Biol. 58, 501-509]. We now report that neither protein synthesis nor recycling of receptors between the cell surface and interior were required for this response. However, removal of cell surface components with trypsin demonstrated that induced gelatin binding required native cell surface constituents. It was found that in the presence of the 70-kDa fibronectin fragment and gelatin, matrix metalloprotease-2 (MMP-2) and matrix metalloprotease-9 (MMP-9) activity in the cell layers was significantly decreased or undetectable, respectively. Similar levels of increased gelatin binding could be reproduced after inhibition of matrix-degrading metalloprotease activity with 1'10-phenanthroline. These results demonstrate that a macrophage specific response that decreased gelatinase activity and increased gelatin binding was initiated by interaction with a 70-kDa fibronectin fragment and gelatin.  相似文献   

15.
We have used computer modeling of insulin 3-D structure and experimental data about action of site point mutation on insulin activity to design functionally important domain with signaling activity and synthesized peptide than might be sufficient for the binding to insulin receptor. The designed and synthesized peptide consist of ten residues and may be obtained in two forms: oxidized and reduced (with or without disulfide bond). The synthesized decapeptide peptide represents functionally important site for binding to the insulin receptor. Amino acid residues at position 1-8 correlate with B-chain of insulin at position (B19-B26). Residues at position 9.10 correlate with A-chain at position A-10-A21. This peptide was tested with cell culture L-929 (glucose uptake) in comparison with bioactive commercial peptide (R-G-FF) and insulin. It was shown that synthesized peptide exhibit biological activity at molar concentration 0.01-1 mkM. Our results successfully demonstrate the synthetic insulin fragment have insulin-like biological activity.  相似文献   

16.
The gastrointestinal pathogen Aeromonas hydrophila strain A186 produces a collagen-binding protein (CNBP) which is found extracellularly and loosely associated with the cell surface. The cell-associated CNBP was purified by sequential ammonium sulphate precipitation, size-exclusion chromatography and ion-exchange chromatography, or by sequential ammonium sulphate precipitation and affinity chromatography with collagen-Sepharose. The purified CNBP was homogeneous in SDS-PAGE, and had a mol. wt of c. 98 kDa. Cyanogen bromide cleavage of the CNBP destroyed collagen-binding activity; however, enzymic digestion with Staphylococcus aureus V8 protease generated > 10 polypeptide fragments, from which a 30-kDa polypeptide contained the strongest collagen-binding activity. Binding of collagen by the CNBP was restricted to the alpha1 (I) chain of the collagen molecule and binding seemed to involve both the carbohydrate moieties and certain peptide sequences on the collagen. Collagen-saccharides generated by alkaline hydrolysis inhibited collagen binding by A. hydrophila. Also, glycosidase digestion and chemical alteration of the carbohydrate residues of collagen reduced its ability to be bound by the CNBP. Collagen-homologous synthetic peptides inhibited binding of 125I-collagen by the bacteria.  相似文献   

17.
The dissociation constants (Kd) of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 for the active and latent forms of matrix metalloproteinase (MMP)-2 and MMP-9 were evaluated using surface plasmon resonance (SPR) and enzyme inhibition studies. SPR analysis shows biphasic kinetics with high (nM) and low (microM) affinity binding sites of TIMP-2 and TIMP-1 for MMP-2 (72- and 62-kDa species) and MMP-9 (92- and 82-kDa species), respectively. In contrast, binding data of TIMP-2 to an MMP-2 45-kDa active form lacking the C-terminal domain and to an MMP-2 C-terminal domain (CTD) fragment displays monophasic kinetics with Kd values of 315 and 60 nM, respectively. This suggests that the CTD contains the high affinity binding site, whereas the catalytic domain contains the low affinity site. Also, binding of TIMP-2 to pro-MMP-2 is stronger at both the high and low affinity sites than the corresponding binding of TIMP-2 to the MMP-2 62-kDa form demonstrating the importance of the N-terminal prodomain. In addition, the Kd value of TIMP-1 for the MMP-2 62-kDa species is 28. 6 nM at the high affinity site, yet neither the MMP-2 45-kDa species nor the CTD interacts with TIMP-1. Enzyme inhibition studies demonstrate that TIMPs are slow binding inhibitors with monophasic inhibition kinetics. This suggests that a single binding event results in enzyme inhibition. The kinetic parameters for the onset of inhibition are fast (kon approximately 10(5) M-1 s-1) with slow off rates (koff approximately 10(-3) s-1). The inhibition constants (Ki) are in the 10(-7)-10(-9) M range and correlate with the values determined by SPR.  相似文献   

18.
Specific direct bradykinin (BK) binding and competitive inhibition was detected in human neutrophil and peripheral blood mononuclear cell (PBMC) detergent solubilized extracts and purified plasma membranes using in vitro radioreceptor ligand binding. Scatchard analyses of [125I]-BK binding revealed an equilibrium dissociation constant (Kd) of 2.9 x 10(-11) M for neutrophils and 5.6 x 10(-11) M for PBMC using [des-arg9]-BK a B1 agonist; 2.6 x 10(-11) M for neutrophils, 6.2 x 10(-11) M for PBMC with BK a B2 agonist; 5.4 x 10(-11) M for PBMC using Lys-BK a B2 agonist. The number of binding sites (Bmax) was calculated to be 0.113 fM/microgram protein (720 receptors per cell) for neutrophils and 0.200 fM/microgram protein (1289 receptors per cell) for PBMC with the B1 agonist while with the B2 agonists the values were 0.128 fM/microgram protein (818 receptors per cell) for neutrophils and 0.157 fM/microgram protein (1005 receptors per cell) for PBMC with BK, and 0.293 fM/microgram protein (1870 receptors per cell) with Lys-BK for PBMC. In a competitive binding inhibition assay using neutrophil and PBMC glycerol purified plasma membranes, high affinity binding in the nanomolar range was detected to Lys-BK and BK but with [des-arg9]-BK a 10-100 fold lower order affinity was observed this being indicative of pharmacologically defined B2 characteristics.  相似文献   

19.
The crystal structures of the I domains of integrins MAC-1 (alphaM beta2; CD11b/CD18) and LFA-1 (alphaL beta2; CD11a/CD18) show that a single conserved cation-binding site is present in each protein. Purified recombinant I domains have intrinsic ligand binding activity, and in several systems this interaction has been demonstrated to be cation-dependent. It has been proposed that the I domain cation-binding site represents a general metal ion-dependent adhesion motif utilized for binding protein ligands. Here we show that the purified recombinant I domain of LFA-1 (alphaLI) binds cations, but with significantly different characteristics compared with the I domain of MAC-1 (alphaMI). Both alphaLI and alphaMI bind 54Mn2+ in a conformation-dependent manner, and in general, cations with charge and size characteristics similar to Mn2+ most effectively inhibit 54Mn2+ binding. Surprisingly, however, physiological levels of Ca2+ (1-2 mM) inhibited 54Mn2+ binding to purified alphaLI, but not to alphaMI. Using 45Ca2+ and 54Mn2+ in direct binding studies, the dissociation constants (KD) for the interactions between these cations and alphaLI were estimated to be 5-6 x 10(-5) and 1-2 x 10(-5) M, respectively. Together with the available structural information, the data suggest differential affinities for Mn2+ and Ca2+ binding to the single conserved site within alphaLI. Antagonism of LFA-1, but not MAC-1, -mediated cell adhesion by Ca2+ may be related to the Ca2+ binding activity of the LFA-1 I domain.  相似文献   

20.
Crystallographic and biochemical studies have indicated that the peptide-binding site of the molecular chaperone HSC70 is located in a small subdomain comprising a beta-sheet motif followed by a helical region, and there is some evidence of the involvement of this site in oligomerization of the protein. To determine the structure of this subdomain in solution and examine its involvement in oligomerization of HSC70, a 17-kDa protein (residues 385-540 of HSC70) consisting mainly of the peptide-binding site was constructed and analyzed for oligomerization properties. This small domain was found to bind peptides and to form oligomers in solution, probably tetramers, which dissociated into monomers on peptide binding in a manner comparable with that observed for the whole protein. Furthermore, in the 60-kDa fragment of HSC70, which is composed of the 17-kDa domain and the 44-kDa ATPase domain, not only were the oligomerization properties conserved, but dissociation of multimeric species into monomers on ATP binding also occurred and peptide stimulation of ATPase activity was restored. These results indicate that the isolated 17-kDa peptide-binding domain is necessary and sufficient for oligomerization of the whole protein, suggesting that the peptide-binding site may be involved in the oligomerization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号