共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of laser shock peening (LPS) in the fatigue crack growth behaviour of a 2024‐T3 aluminium alloy with various notch geometries was investigated. LPS was performed under a ‘confined ablation mode’ using an Nd: glass laser at a laser power density of 5 GW cm ?2. A black paint coating layer and water layer was used as a sacrificial and plasma confinement layer, respectively. The shock wave propagates into the material, causing the surface layer to deform plastically, and thereby, develop a residual compressive stress at the surface. The residual compressive stress as a function of depth was measured by X‐ray diffraction technique. The fatigue crack initiation life and fatigue crack growth rates of an Al alloy with different preexisting notch configurations were characterized and compared with those of the unpeened material. The results clearly show that LSP is an effective surface treatment technique for suppressing the fatigue crack growth of Al alloys with various preexisting notch configurations. 相似文献
2.
Some aircraft manufacturers and operators have attempted to control in-service corrosion by the use of water-displacing organic inhibitors which can be either brushed or sprayed onto corrosion-susceptible areas of the structure. However, because of the low surface tension and lubricating properties of these preparations, concern has been expressed as to their potential side-effects on the fatigue performance of bolted and riveted joints. Fatigue tests were carried out in repeated tension under both constant-amplitude and multi-load-level sequences on several types of 8-bolt double-lap joint specimens of 2024-T3 alclad aluminium alloys sheet. Tests were made on joints assembled with either ‘dry’ components or components coated with the corrosion inhibitors LPS-3 or PX-112. Contrary to the findings of previous investigations into the effect of inhibitors on riveted joints, the two corrosion inhibitors used were found, in general, to have either no effect or a beneficial effect on the fatigue lives of bolted joints. It is concluded that the specific effects of a water-displacing organic corrosion inhibitor on fatigue strength of joints are likely to be dependent on the type of joint, its configuration and on the severity of the load spectrum involved. 相似文献
4.
Load‐controlled fatigue tests were performed at 20 and 50 °C using two relative humidity levels of 55 and 80% to characterize the influence of humidity and temperature on the fatigue behaviour of an extruded AZ61 magnesium alloy. Fatigue tests were also conducted at 150 °C. No significant variation in fatigue properties was noticed with respect to temperature over the range from 20 to 50 °C for both the humidity levels. Fatigue limits in the range 140–150 MPa were observed for relative humidity of 55%. Fatigue strength decreased significantly with increase in temperature to 150 °C. Further, a significant reduction in fatigue strength with a fatigue limit of ~110 MPa was observed with increase in relative humidity to 80% at 20 and 50 °C. The crack initiation and propagation remained transgranular under all test conditions. The fatigue fracture at low stress amplitudes and high relative humidity of 80% results from the formation of corrosion pits at the surface and their growth to a critical size for fatigue‐crack initiation and propagation. The observed reduction in fatigue strength at high humidity is ascribed to the effects associated with fatigue–environment interaction. 相似文献
5.
为了研究不同腐蚀条件下2024铝合金的疲劳性能,首先设计搭建原位腐蚀疲劳平台,然后分别进行无腐蚀疲劳、预腐蚀疲劳和原位腐蚀疲劳实验,分析不同腐蚀疲劳条件下2024铝合金的疲劳断裂行为,最后利用扫描电镜(SEM)表征宏、微观断口特征,探究失效机理。结果表明:相同腐蚀环境和时间下,预腐蚀和原位腐蚀疲劳寿命分别为无腐蚀疲劳寿命的92%和42%;在原位腐蚀疲劳条件下,滑移带挤入、挤出导致表面粗糙度增加,吸附较多腐蚀介质,加剧蚀坑演化,易于裂纹萌生并形成多个裂纹源。裂纹的连通形成更大尺寸的损伤,并在材料内部快速扩展。预腐蚀和原位腐蚀疲劳试件断口观察到大量脆性疲劳条带,并且原位腐蚀疲劳条带平均间距约为无腐蚀疲劳条带间距的2倍,说明原位腐蚀疲劳条件下裂纹扩展速率更快。 相似文献
6.
Pit always changes its shape and size during corrosion fatigue. The actual morphology of pit is an outcome of the interaction between the variation in the elastic energy, surface energy and electrochemical energy stored in the cyclically stressed solid. In this paper, a two‐variable semi‐elliptical model is proposed to depict the pit's growing morphology. The critical condition for corrosion fatigue crack nucleation is deduced according to dislocation theory, and the influences of some important factors on critical pit size and crack nucleation life are discussed. 相似文献
7.
A considerable amount of research has been carried out on the prediction of mean stress effects on fatigue crack growth in structures. Newer types of structure are now being developed for use in highly dynamic, harsh marine environments, particularly for renewable energy applications. Therefore, the extent to which mean stresses can enhance corrosion‐assisted fatigue damage in these structures needs to be better understood. A new theoretical model that accounts for mean stress effects on corrosion fatigue crack growth is proposed. The model is developed based on the relative crack opening period per fatigue cycle and by considering only the damaging portion of the stress cycle. The baseline data for the modelling exercise are the data obtained at a stress ratio of 0.1 in air and seawater tests conducted on compact tension specimens. The model is validated by comparison with experimental data and with other fatigue crack propagation models. The proposed model correlates fairly well with experimental data and the other models examined. 相似文献
8.
Effect of stress ratio and frequency on the fatigue crack propagation of 2618 aluminium alloy-silicon carbide composite were
investigated at ambient temperature. With the first set of specimens, the fatigue crack growth rates were studied at three
frequencies of 1 Hz, 5 Hz and 10 Hz at a stress ratio of 0.1 whereas the effects of stress ratios of 0.1, 0.25 and 0.50 were
studied with the second set of specimens. The study showed that the fatigue crack propagation behaviour of this metal matrix
composite was influenced to an appreciable extent by the stress ratio, but not by the fatigue frequencies used in this investigation. 相似文献
9.
Abstract Material imperfections usually play a substantial role in the early stages of fatigue cracking. This article presents some observations concerning fatigue crack initiating flaws and early crack growth in 7050-T7451 aluminium alloy specimens and in full-scale fatigue test articles with a production surface finish. Equivalent initial flaw size (EIFS) approaches used to evaluate the fatigue implications of metallurgical, manufacturing and service-induced features were refined by using quantitative fractography to acquire detailed information on the early crack growth behaviour of individual cracks; the crack growth observations were employed in a simple crack growth model developed for use in analysing service crack growth. The use of observed crack growth behaviour reduces the variability which is inherent in EIFS approaches which rely on modelling the whole of fatigue life, and which can dominate EIFS methods. The observations of realistic initial flaws also highlighted some of the significant factors in the fatigue life-determining early fatigue growth phase, such as surface treatment processes. Although inclusions are often regarded as the single most common type of initiating flaw, processes which include etching can lead to etch pitting of grain boundaries with significant fatigue life implications. 相似文献
10.
根据挤压镁合金AZ80人工时效热处理(T5-177℃,16 h)前后分别在空气和NaCl介质中的疲劳寿命,研究了变形镁合金的腐蚀疲劳机理以及β相在腐蚀疲劳中的作用.结果表明:时效可导致AZ80组织β相体积分数增加、拉伸强度和硬度提高,可明显地提高在低应力水平下的腐蚀疲劳寿命.在空气中,疲劳裂纹萌生于表层和亚表面中的夹杂物;而在腐蚀介质中,腐蚀疲劳微裂纹萌生于试样表面的腐蚀坑,点蚀坑萌生于与β相相邻的α相.疲劳断口可见河流花样、二次裂纹、韧窝,具有解理特征.阳极溶解是挤压镁合金AZ80的腐蚀疲劳机制. 相似文献
11.
In recent years, with higher demand for improved quality and corrosion resistance, recovered substrates have been extensively used. Consequently residual stresses originated from these coatings reduce the fatigue strength of a component. Due to this negative influence occasioned by corrosion resistance protective coatings, an effective process like shot peening must be considered to improve the fatigue strength. The shot peening treatment pushes the crack sources beneath the surface in most of medium and high cycle cases due to the compressive residual stress field (CRSF) induced. The aim of this study was to evaluate the influence on the fatigue life of anodic films grown on 7050-T7451 aluminium alloy by sulphuric acid anodizing, chromic acid anodizing and hard anodizing. The influence on the rotating and reverse bending fatigue strength of anodic films grown on the aluminium alloy is to degrade the stress life fatigue performance of the base material. A consistent gain in fatigue life in relation to the base material was obtained through the shot peening process in coated specimens, associated to a residual stress field compressive near the surface, useful to avoid fatigue crack nucleation and delay or even stop crack propagation. 相似文献
12.
The feasibility of using an accelerated fatigue test programme to predict constant amplitude fatigue lives of precracked specimens was examined. An analytical basis for the fracture mechanics approach was developed by modifying earlier work that had been applied to unnotched specimens. A load programme involving a linearly increasing load with cycle number was used for the accelerated tests. The predicted curves from the accelerated test data were found to provide a good fit for the constant amplitude results in 2024-T3 and 7075-T6 aluminium alloys. These results indicate that the accelerated test data can be effectively employed to predict constant amplitude fatigue lives, while also providing a considerable reduction in testing time. 相似文献
13.
The mechanistic aspects of process of initiation of a mode‐I fatigue crack in an aluminium alloy (AA 2219‐T87) are studied in detail, both computationally as well as experimentally. Simulations are carried out under plane strain conditions with fatigue process zone modelled as stress‐state–dependent cohesive elements along the expected mode‐I failure path. An irreversible damage parameter that accounts for the progressive microstructural damage due to fatigue is employed to degrade cohesive properties. The simulations predict the location of initiation of the fatigue crack to be subsurface where the triaxiality and the opening tensile stresses are higher in comparison with that at the notch surface. Examination of the fracture surface profile of fracture test specimens near notch tip reveals a few types of regions and existence of a mesoscopic length scale that is the distance of the location of highest roughness from the notch root. A discussion is developed on the physical significance of the experimentally observed length scale. 相似文献
14.
Fatigue properties of a thermomechanically treated 7475 aluminium alloy have been studied in the present investigation. The
alloy exhibited superior fatigue life compared to conventional structural aluminium alloys and comparable stage II crack growth
rate. It was also noticed that the fatigue crack initiated from a surface grain and the crack extension was dominated by ductile
striations. Analysis also revealed that this alloy possessed fracture toughness and tensile properties superior to that noticed
with other structural aluminium alloys. Therefore the use of this alloy can safely reduce the overall weight of the aircraft. 相似文献
15.
Axial fatigue tests have been performed at three different stress ratios, R, of ?1, 0 and 0.4 using smooth specimens of an aluminium alloy composite reinforced with SiC particulates of 20 μm particle size. The effect of stress ratio on fatigue strength was studied on the basis of crack initiation, small crack growth and fracture surface analysis. The stress ratio dependence of fatigue strength that has been commonly observed in other materials was obtained, in which fatigue strength decreased with increasing stress ratio when characterized in terms of stress amplitude. At R=?1, the fatigue strength of the SiC p/Al composite was the same as that of the unreinforced alloy, but at R= 0 and 0.4 decreased significantly, indicating a detrimental effect of tensile mean stress in the SiC p/Al composite. The modified Goodman relation gave a fairly good estimation of the fatigue strength at 10 7 cycles in the unreinforced alloy, but significantly unconservative estimation in the SiC p/Al composite. At R= 0 and 0.4, cracks initiated at the interfaces between SiC particles and the matrix or due to particle cracking and then grew predominantly along the interfaces, because debonding between SiC particles and the matrix occurred easily under tensile mean stress. Such behaviour was different from that at R=?1. Therefore, it was concluded that the decrease in fatigue strength at high stress ratios and the observed stress ratio dependence in the SiC p/Al composite were attributed to the different fracture mechanisms operated at high stress ratios. 相似文献
16.
The fatigue crack growth characteristics of high-strength aluminium alloys are discussed in terms of behaviour during mechanical testing and fracture surface appearance. For a wide range of crack growth rates, the crack extends both by the formation of ductile striations and by the coalescence of micro-voids. Dimples are observed at stress intensities very much less than the plane strain fracture toughness, and this is explained in terms of the probability of inclusions lying close to the crack tip. The striation formation process is described as a combination of environmentally-enhanced cleavage processes and plastic blunting of the crack tip. 相似文献
17.
A model describing corrosion fatigue crack growth rate d a/d N has been proposed. The crack growth rate is assumed to be proportional to current flowing through the electrolyte within the crack during a loading cycle. The Shoji formula for the crack tip strain rate has been assumed in the model. The obtained formula for the corrosion fatigue crack growth rate is formally similar to the author's empirical formulae established previously. The different effects of Δ K and the fatigue loading frequency f on d a/d N, in region I as compared to region II of the corrosion fatigue crack growth rate characteristics can be described by a change of one parameter only: the crack tip repassivation rate exponent. 相似文献
18.
This paper reports on a study on creep–fatigue crack growth resistance of a precipitation hardened 2650 T6 aluminium alloy selected for fuselage panels of a future civil supersonic aircraft. The objective is to develop a methodology to predict crack growth under very low frequency loading at elevated temperatures. With this aim, creep crack growth rates (CCGRs), fatigue crack growth rates (FCGRs), creep–fatigue crack growth rates (CFCGRs) have been measured at 130 °C and 175 °C in laboratory air and in vacuum at R = 0.5 under different load frequencies and waveshape signals. It is shown that, for a given temperature, CFCGRs are unaffected by frequency below a critical value of the load period Tc. Above this value CFCGRs are directly proportional to the load period. This time-dependent crack growth regime is assisted by a significant creep damage as indicated by the large amount of intergranular decohesions induced by cavitation on fracture surfaces. CFCGRs are calculated under the assumption that fatigue damage and creep damage can be linearly summed. In vacuum the predictions are in good agreement with experimental data at both temperatures. In air however a discrepancy is observed for low frequency loading, suggesting the occurrence of a creep–fatigue–environment interaction. As a consequence the time-dependent crack growth behaviour affected by this interaction is different from creep crack growth behaviour, although the reasons for this are still unclear. A methodology is then proposed to predict CFCGRs in air. This methodology, if assessed by very low frequency experimental results, could be extended to different structural components made of aluminium alloys operating at elevated temperatures, provided that the mechanisms are unchanged. 相似文献
19.
A study of fatigue crack propagation rates of 316 grade stainless steels in air and in an aqueous saline environment was carried out in an attempt to assess the fatigue properties encountered when such materials are used as surgical implants. The effects of variables such as temperature, pH, oxygenation level, bulk electrode potential, mean stress, frequency and stress waveform on the Paris crack growth law parameters were determined. Corrosion fatigue effects were observed in the aqueous saline environment, and a mechanism to describe this effect is proposed. 相似文献
|