首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiuser diversity is an inherent form of diversity present in any time-varying system with several users. An opportunistic scheduler has to be used in order to exploit this type of diversity. A scheme that increases the effective dynamic range of the channel by deploying multiple antennas at the transmitter is called opportunistic beamforming. Opportunistic beamforming increases the degree of multiuser diversity in several scenarios, including correlated channels. Nevertheless, multiuser diversity can also be combined with other transmit schemes that have proven to be effective in correlated channels, such as eigenbeamforming. Eigenbeamforming is a point-to-point link transmit technique that could easily be combined with an opportunistic scheduler to extract multiuser diversity. We refer to the joint use of eigenbeamforming with an opportunistic scheduler as opportunistic eigenbeamforming. In this work, we show that the available multiuser diversity with opportunistic eigenbeamforming is larger than the one achieved when opportunistic beamforming is employed using the proportional fair scheduler under different degrees of correlation in the channel. In the present work we have considered a single-cell scenario.  相似文献   

2.
Transmit diversity, which was initially developed for noise-limited environments, has been promoted as a viable candidate for improving the link quality in both existing and future systems for wireless communication. However, to ensure efficient spectrum utilization, receivers operating within wireless multiuser networks must be robust not only to fading and noise but to interference from other system users as well. This work considers interference robustness aspects when transmit diversity, in the form of space-time block coding, is used in multiuser systems. Properties of the space-time block encoded signals such as code rate, block structure, diversity order, etc., and their implications on detection and interference rejection by means of noise whitening are discussed. To handle the presence of space-time block encoded interference, a space-time processing-based extension of an interference rejection combining algorithm is proposed. Results are presented indicating that transmit diversity based on space-time block codes (STBCs) of the linear dispersion type improve robustness against interference in terms of an increased diversity advantage. This can be achieved either by increasing the number of transmit antennas or by reducing the rate of the code. It is also shown, by analysis and by simulation examples, that the performance improvements obtained by using transmit diversity in multiuser systems may rapidly subside as the signal-to-interference ratio decreases. However, by using the proposed interference rejection scheme tailored to the space-time encoded structure, performance improvements of transmit diversity are also obtained in a multiuser environment.  相似文献   

3.
It has been observed through simulations of some specific scheduling algorithms that multiuser diversity gains in packet data systems with channel-aware scheduling can be reduced in the presence of any form of link diversity, such as transmit antenna diversity or wideband multipath diversity. We establish that asymptotically, in the limit of large number of transmit antennas and users, the maximum throughput achieved by any optimal scheduling algorithm in the presence of transmit diversity under signal-to-noise-ratio-only feedback can be infinitely worse than that of a system with no diversity. Our results are general and are independent of any particular scheduling algorithm.  相似文献   

4.
In this paper, we present a comprehensive performance analysis for multiple‐input multiple‐output (MIMO) systems with multiuser diversity over Rayleigh fading channels. We derive exact closed‐form expressions of the outage probability and the average bit error rate (BER) for different MIMO schemes, including the selective combining (SC), maximum ratio combining (MRC) and space‐time block codes (STBC). We also provide the explicit upper bounds on the BER performance. Finally, the mathematical formalism is verified by numeric results that study the interaction between the antenna diversity and the multiuser diversity. It is observed that the system performance is deteriorated as the number of transmit antennas increases in multiuser scenario, which is unlike the case in single‐user systems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
多天线无线数据通信系统中多用户分集的研究   总被引:1,自引:0,他引:1  
研究当接收天线不少于发送天线时多输入多输出(MIMO)系统的多用户分集能力。首先从理论上分析了发送天线个数等于1和2时最大似然接收和迫零接收系统的平均吞吐量和调度增益,以及仿真分析了发送天线个数大于2时系统性能。理论分析和仿真表明:在多用户的MIMO系统中,接收的平均信噪比、用户个数、收发天线个数、接收机的结构等对于多用户分集有很大的影响。当发送天线个数为1时,接收天线较少(1,2,3)和平均信噪比为.10dB时调度增益很大,但调度增益随着天线个数和发送功率增大急剧下降。和最大似然接收相比,迫零接收具有更大的多用户分集增益,因此迫零接收机的吞吐量可以很容易超过最大似然接收机。  相似文献   

6.
Antenna diversity in multiuser data networks   总被引:1,自引:0,他引:1  
We consider the use of multiple antennas at the transmitter and/or the receiver to provide open-loop spatial diversity in a multiuser wireless data network. With channel quality information (CQI) available to the transmitter, and by always scheduling the transmission to the active user having the best channel conditions at the time of scheduling, another form of diversity, termed multiuser diversity, is obtained in a data system. This paper provides an analysis of the interaction between these two forms of diversity. From a network point of view, we prove that the asymptotic sum rate, in the limit of a large number of active homogeneous users and subject to the same average total transmit power, is inversely related to the number of transmit antennas for independent and identically distributed (i.i.d.) flat Rayleigh fading channels. In the case of i.i.d. flat Rician fading, the asymptotic sum rate also depends inversely on the number of transmit antennas, but directly on the number of receive antennas. Numerically, we show that the total diversity gain is also constrained by finite CQI quantization and channel fading statistics.  相似文献   

7.
Multi-user diversity in a spectrum sharing system   总被引:4,自引:0,他引:4  
We investigate the effects of multi-user diversity in a spectrum sharing system where secondary users restrictively utilize a spectrum licensed to primary users only if interference perceived at primary users is regulated below a predetermined level. This interference regulation affects the characteristics of multiuser diversity gains previously known in non-spectrum sharing systems. Our numerical and analytical results show that the multiuser diversity gain in a spectrum sharing system increases differently according to conditions given by the transmit power of secondary users, P, and a predetermined interference temperature, Q - if P is sufficiently larger than Q, the multiuser diversity gain in terms of capacity scales like log2 (W (Ns)) similarly to a previously known scaling law in the non-spectrum sharing systems, where W(·) and Ns denote a Lambert W function and the number of secondary transmitters, respectively. However, the scaling law of multiuser diversity gain becomes log2(Ns) as P becomes sufficiently larger such that P ≫ QNs.  相似文献   

8.
多天线的发送分集系统中多用户分集的研究   总被引:2,自引:0,他引:2  
研究了如何通过选择发送天线和天线组合来提高整个多用户多天线系统的性能。本文分别讨论了STOBC、选择式发送分集、相位加权等各种发送信号结构下系统的调度性能。和其它发送信号结构相比,STOBC对于调度性能有着很大危害。信道反馈信息越多,调度性能就越好。不同的发送天线选择和组合策略得到不同的性能。本文讨论了三种选择策略:max-max, max-sum和max-min。max-max的调度性能优于其它两种策略。因此,发送信号的结构和选择策略都严重影响着多用户分集。  相似文献   

9.
Cooperative transmit diversity based on superposition modulation   总被引:3,自引:0,他引:3  
We propose a new strategy for cooperative transmit diversity based on superposition modulation and multiuser detection. The new scheme can outperform "classical" cooperative diversity based on decode-and-forward by about 1.5-2 dB in the SNR range of interest and at the same computational complexity.  相似文献   

10.
In this paper, a framework is presented to analyze the performance of multiuser diversity (MUD) in multiuser point-to-multipoint (PMP) MIMO systems with antenna selection. Based on this framework, the tight closed-form expressions of outage capacity and average symbol error rate are derived for the multiuser transmit antenna selection with maximal-ratio combining (TAS/MRC) system, by which we show how and with what characteristics antenna selection gains, MIMO antenna configurations and fading gains impact on the system performance, with an emphasis on the study of multiuser diversity influence. From both theoretical and simulation results, our study shows that in multiuser PMP TAS/MRC systems an diversity order equals to the product of the number of transmit antennas, number of receive antennas and number of users can be achieved; what's more, users plays a key role in the system performance and can be viewed as equivalent 'virtual" transmit antennas, which is the source of the multiuser diversity inherent exists in the multiuser system. This kind of diversity can be efficiently extracted in the design of multiantenna systems.  相似文献   

11.
Phase-sweep transmit diversity (PSTD) has been widely studied in 3G1X and Universal Mobile Telecommunications Systems (UMTS) for its performance gain and simplicity. However, conventional PSTD systems are designed based on asingle-sweeping beam, and only one user is selected for transmission at any time. Therefore, it fails to fully exploit the available spatial degree of freedom. In this study, a novel spatial-multiplexing phase-sweep transmit diversity (SM-PSTD) scheme with partial feedback mobile-assisted scheduling is being proposed. The downlink performance (system capacity and proportional fairness) of a multiantenna base station has been its focus. The spatial-channel sweeping facilitates the multiuser selection diversity between users, while the spatial multiplexing significantly enhances the system capacity. As the number of transmit antennas n/sub T/ is increased, the SM-PSTD system performance is gradually limited by the multiuser interference because it is more and more difficult to find a set of users perfectly orthogonal within the n/sub T/ spatial channels. Yet, the multiuser interference could be reduced by increasing the number of active users K in the system. Asymptotically, at large n/sub T/ and K, it shows that the system capacity scales linearly instead of logarithmically with respect to the transmitted power.  相似文献   

12.
In wireless fading channels, multiuser diversity can be exploited by scheduling users to transmit when their channel conditions are favorable. This leads to a sum throughput that increases with the number of users and, in certain cases, achieves capacity. However, such scheduling requires global knowledge of every user's channel gain, which may be difficult to obtain in some situations. This paper addresses contention-based protocols for exploiting multiuser diversity with only local channel knowledge. A variation of the ALOHA protocol is given in which users attempt to exploit multiuser diversity gains, but suffer contention losses due to the distributed channel knowledge. The growth rate of the sum throughput for this protocol is characterized in a backlogged system under both short-term and long-term average power constraints. A simple "fixed-rate" system is shown to be asymptotically optimal and to achieve the same growth rate as in a system with an optimal centralized scheduler. Moreover, asymptotically, the fraction of throughput lost due to contention is shown to be 1/e. Also, in a system with random arrivals and an infinite user population, a variation of this ALOHA protocol is shown to be stable for any total arrival rate, given that users can estimate the backlog.  相似文献   

13.
In CDMA mobile communication systems, multiple access interference can be canceled by multiuser detection technique. The Degradation by channel fading can be reduced by diversity reception. This paper investigates a family of multiuser receivers that combined decor-relating detection, antenna diversity and RAKE multipath diversity. The performance of the multiuser receivers is analyzed. The results demonstrate a significant increase in the performance of the receivers by using multiuser detection and diversity reception.  相似文献   

14.
The performance of space-time transmit diversity is examined in a multiuser direct-sequence code-division multiple-access (DS-CDMA) system over fast- and slow-fading channels. The underlying space-time system employs transmit antennas and receive antennas at the mobile user and receiver base station, respectively. We consider the performance of the space-time multiuser system when using the linear decorrelator detector to combat the effect of multiuser interference. In our analysis, we derive a closed-form expression for the probability of bit error for both fast- and slow-fading channels. These theoretical results are shown to be very accurate when compared to system simulations. Both simulations and theoretical results prove that, regardless of the system load, the full diversity order of for fast-fading channels and for slow-fading channels is always maintained, and only a signal-to-noise ratio (SNR) loss is incurred. This SNR loss is proved to be a function of only the number of users (i.e., level of interference) and independent of the number of transmit and/or receive antennas. Using our theoretical results, we show that the loss in SNR from the single-user bound can be well approximated by , where represents the level of multiuser interference.  相似文献   

15.
On the combination of spatial diversity and multiuser diversity   总被引:1,自引:0,他引:1  
The intention of this letter is to clarify various aspects related to the combined use of spatial diversity and multiuser diversity in a mobile network. We consider a system with one base station and K users, and study five different spatial diversity transmission modes. We show that in general, the multiuser diversity benefit is not reduced by the proper use of spatial diversity. Numerical examples are provided.  相似文献   

16.
Great expectations: the value of spatial diversity in wireless networks   总被引:4,自引:0,他引:4  
The effect of spatial diversity on the throughput and reliability of wireless networks is examined. Spatial diversity is realized through multiple independently fading transmit/receive antenna paths in single-user communication and through independently fading links in multiuser communication. Adopting spatial diversity as a central theme, we start by studying its information-theoretic foundations, then we illustrate its benefits across the physical (signal transmission/coding and receiver signal processing) and networking (resource allocation, routing, and applications) layers. Throughout the paper, we discuss engineering intuition and tradeoffs, emphasizing the strong interactions between the various network functionalities.  相似文献   

17.
Relying on space-time linearly precoded orthogonal frequency-division multiple access (OFDMA) and exploiting both transmit and receive antenna diversity, we design herein multirate transceivers that guarantee deterministic symbol recovery with diversity gains regardless of the (possibly unknown) frequency-selective finite impulse response (FIR) channels and multiuser interference. Our approach is based on a three-level design of user codes: the top level (based on OFDMA) handles multiuser interference, the middle level (based on space-time block coding) results in space-time diversity gains, and the lower level (based on linear precoding) mitigates intersymbol interference (ISI). In a multiuser/multirate setting, with two transmit and a single receive antenna, our designs achieve guaranteed diversity gains, whereas the use of two receive antennas could potentially double the capacity of the system (in terms of maximum number of users or achievable transmission rates) under favorable conditions (such as no frequency offset). Simulations illustrate the merits of our approach  相似文献   

18.
In this paper, we study the ability of transmit diversity to provide diversity benefit to a receiver in a Rayleigh fading environment. With transmit diversity, multiple antennas transmit delayed versions of a signal to create frequency-selective fading at a single antenna at the receiver, which uses equalization to obtain diversity gain against fading. We use Monte Carlo simulation to study transmit diversity for the case of independent Rayleigh fading from each transmit antenna to the receive antenna and maximum likelihood sequence estimation for equalization at the receiver. Our results show that transmit diversity with M transmit antennas provides a diversity gain within 0.1 dB of that with M receive antennas for any number of antennas. Thus, we can obtain the same diversity benefit at the remotes and base stations using multiple base-station antennas only  相似文献   

19.
In multiuser cooperative relay networks, cooperative diversity can be obtained with the help of relays, while multiuser diversity is an inherent diversity in multiuser systems. In this letter, the performance analysis of multiuser diversity in cooperative multi-relay networks is presented. Both the case of all relay participating and the case of relay selection are considered. We first derive asymptotic expressions of outage probability and symbol error probability for amplify-and-forward (AF) and decode-and-forward (DF) protocols with joint multiuser and cooperative diversity. Then, the theoretical analysis are validated by Monte Carlo simulations. Both the theoretical analysis and simulations show that a multiuser diversity order of K and a cooperative diversity order of M+ 1 can be achieved simultaneously for both AF and DF protocols (where K is the number of accessing users and M is the number of available relays). These demonstrate that the multiuser diversity can be readily combined with the cooperative diversity in multiuser cooperative relay networks.  相似文献   

20.
This paper investigates multiuser diversity in the context of cellular networks, with emphasis on the gains that can be achieved by adaptively inducing fluctuations in the environment. In a cellular system that at any time schedules for service the user with the best channel at that time, the expected service rate increases with the variability of the channel. Controlling the fluctuations using available feedback can further increase the expected service rate. This paper proposes a scheme for controlling fluctuations using only the feedback required to exploit multiuser diversity. Fluctuations are induced by introducing at the base station another transmit antenna that sends out the same signal but at a different phase from the first one, and then adaptively varying the phase difference. The performance of the scheme (for the same total transmitted power) is evaluated when the users are infinitely back-logged or have finite queues, and when the channels are Rayleigh or Ricean distributed. Fairness issues and performance of the scheme under an additional fairness mechanism are also investigated in the context of users with finite queues. In all scenarios the performance is better when fluctuations are adaptively induced than when the fluctuations are randomly induced or not induced at all.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号