首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
智能水凝胶的应用   总被引:4,自引:0,他引:4  
智能水凝胶对于外界微小的物理化学刺激,如温度、电场、磁场、光、pH、离子强度或压力等能够感知并在响应过程中有显著的溶胀行为或响应性。本文重点介绍了智能水凝胶及与之密切相关的智能型大分子在药物控释、组织工程、活性酶的固定、调光材料等方面的应用。  相似文献   

2.
3.
智能型水凝胶   总被引:2,自引:0,他引:2  
介绍了不同响应的智能水凝胶的分类,同时综述了分子器件、调光材料和生物医学三方面的应用以及智能水凝胶的最新发展。  相似文献   

4.
汪莉华  张亚男  林强  卢凌彬 《天津化工》2007,21(6):15-17,34
综述了智能型水凝胶的研究背景、相关理论与实际现状。并从4个主要方面综述了近年来智能型水凝胶改性的研究进展。从各个角度出发,论述了智能型水凝胶的作用、地位和意义,并对它的未来进行了展望。  相似文献   

5.
智能型高分子水凝胶因为能感应到外界环境因素的变化,并且发出响应—凝胶的体积或其他性质发生显著变化,从而导致药物可在定点位置,定时、定量的释放,所以近年来受到普遍重视.本文综述了近年来智能型高分子水凝胶中温度敏感型、pH敏感型以及葡萄糖、电场、磁场、光、微波等敏感型水凝胶及其在药物控释中的应用,介绍了其控释作用机理及应用...  相似文献   

6.
随着现代化工技术的不断进步,刺激响应性水凝胶越来越受到科研人员的关注.刺激响应性短肽水凝胶可在外界的刺激包括pH值、温度、光和酶等物理和化学因素下做出相应的表现,控制其化学构象或理化性质的改变,对所受到的刺激做出相应的响应.对其独特性质进一步研究,将其运用于生物传感、药物控释和组织修复等医学领域,有着较好的发展前景.本...  相似文献   

7.
高分子功能材料是现代高分子科学研究的热点,其中具有刺激响应性的高分子水凝胶材料在化学机械、人工肌肉、药物传递与释放、膜分离、化学阀等诸多领域具有广阔的应用前景而受到越来越多的重视。无论从学术价值还是应用价值,对这一领域的研究都有重要的意义。作为功能高分子材料之一,本文综述了常见的高分子水凝胶的制备方法,介绍了其应用和发展方向。  相似文献   

8.
作为一种智能高分子材料,智能水凝胶具有良好的应用前景,本文重点介绍了刺激响应型智能水凝胶、高强智能水凝胶及自愈合智能水凝胶的结构特征、性能特点及研究现状,并对智能水凝胶的未来发展进行了展望。  相似文献   

9.
介绍了水凝胶的几种主要制备方法,重点介绍了对温度、pH值、光、电、磁、生物分子敏感的水凝胶的近期研究成果,概述了水凝胶在药物可控释放、酶的固定、生物支架材料、智能纺织品等方面的应用进展。  相似文献   

10.
刺激响应性水凝胶在药物缓释、物质分离提纯等领域得到了广泛的应用,文章介绍了能响应温度、pH、光、电场和磁场等外界环境因素变化智能凝胶的结构特点和近期研究进展,并展望了智能凝胶的应用前景。  相似文献   

11.
药物控释用智能水凝胶研究进展   总被引:3,自引:3,他引:3  
智能水凝胶在药物控释方面具有智能化、效率高和安全方便等优点.近年来,研究开发药物控释用智能水凝胶非常活跃,展示了广阔的应用前景.本文综述了药物控释用温度、pH值、葡萄糖、电场、磁场及光敏感水凝胶的最新研究进展.  相似文献   

12.
In order to prepare cost‐effective physically cross‐linked hydrogels including food salt sodium chloride, samples, were prepared with various concentrations of NaCl and respective atactic poly(vinyl alcohol) (a‐PVA), and were evaluated. It had been observed that hydrogels containing NaCl concentration (9–11 wt%) along with a‐PVA concentration 9–5% respectively exhibited higher melting points (91.5–95.1 °C). A higher melting point characterizes the hydrogel composition of a system like a‐PVA(7%)/NaCl(11%)/H2O. The swelling degree of this hydrogel was found to be comparatively better at 37 °C than at any other temperature studied here. However, irregular Fickian swelling was found at this temperature. The UV light absorption maximum at 362–364 nm and minimum at 351 nm for this hydrogel had been found as evidence of physical cross‐linking. A drug, theophylline was loaded by solvent‐sorption and feed‐mixture dissolving methods. The feed‐mixture dissolving method is better than solvent sorption because of high drug loading, comparatively low fraction release rate and more sustained‐release of drug than that of solvent‐sorption. Theophylline was released twice as fast from the hydrogel after solvent‐sorption drug loading (3 h) than from that which used the feed‐mixture dissolving method (6.5 h). Theophylline‐loaded hydrogels of this system (feed‐mixture dissolving) were then prepared at high temperature (60 °C) thawing for 6 h followed by chilling at 0.4 °C for 3 h as one cycle. And the drug release behaviour and mass transfer were found almost the same as for chilling (24 h at 0.4 °C)–thawing (48 h at room temperature). Drug release behaviour was studied as apparently irregular Fickian diffusion (Higuchi Matrix Dissolution Model). © 2002 Society of Chemical Industry  相似文献   

13.
A series of thermosensitive hydrogels were prepared from various molar ratios of N‐isopropylacrylamide (NIPAAm) and sodium‐2‐acrylamido‐2‐methylpropyl sulfonate (NaAMPS). Factors such as temperature and initial total monomer concentration and different pH solutions were investigated. Results indicated that the more the NaAMPS content in hydrogel system, the higher the swelling ratio and the gel transition temperature; the higher the initial monomer concentration, the lower the swelling ratio. The result also indicated that the NIPAAm/NaAMPS copolymeric hydrogels had different swelling ratios in various pH environments. The present gels showed a pH‐reversible property between pH 3 and pH 10 and thermoreversibility. The swelling ratios of copolymeric gels were lower in a strong alkaline environment because the gels were screened by counterions. Finally, the drug release behavior of these gels was also investigated in this article. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1760–1768, 2000  相似文献   

14.
崔福兴 《粘接》2010,31(5):64-68
聚乙烯醇水凝胶在生物医学工程领域的用途非常广泛。本文就PVA水凝胶的制备、改性及其在生物医学工程中的应用进行综述,简述了PVA水凝胶的溶胀和收缩机理,同时对其发展方向进行了展望。  相似文献   

15.
近年来,蛋白基水凝胶因具有来源丰富、可生物降解和良好的生物相容性等优点受到人们的关注.在阐述蛋白基水凝胶交联机理的基础上,介绍了波谱、热分析和显微镜等方法在蛋白质凝胶结构研究方面的应用,并综述了国内外蛋白质凝胶在吸水凝胶、智能凝胶及组织工程方面的应用,指出了蛋白基水凝胶研究中存在的问题及发展方向.  相似文献   

16.
Marilia Panayiotou 《Polymer》2005,46(3):615-621
Stimuli-responsive poly(N,N′-diethylacrylamide) gels were prepared by free radical polymerisation in aqueous solution, using N,N-methylenebisacrylamide as crosslinking agent. The gels were compared with the corresponding poly(N-isopropylacrylamide)-based gels. In particular, the swelling ratio of both gel types including the effect of the crosslinker content, their swelling and deswelling kinetics, their permeability and finally their drug (insulin) storage and controlled release ability were compared. In spite of the similarity in the monomer/crosslinker ratio, the deswelling kinetics and the critical temperatures (ca. 30-32 °C in pure water), some differences could be observed. Compared to poly(N-isopropylacrylamide)-based gels, poly(N,N′-diethylacrylamide)-based gels show a broader phase transition temperature interval, a more pronounced dependency of the swelling ratio on the crosslinker content, slower reswelling kinetics, a higher ingress percentage for dextran standards ranging from 5 to 70 kD, but lower ingress percentages for proteins (BSA, insulin) and much faster drug (insulin) release kinetics. While a non-linear release kinetic was observed in the case of the poly(N-isopropylacraylamide)-based gels both in water and in PBS (phosphate buffered saline), this was not the case for the poly(N,N′-diethylacrylamide)-based gels.  相似文献   

17.
介绍了温度、pH、电场、磁场、光,葡萄糖敏感型智能水凝胶的制备方法以及智能水凝胶在药物缓释控释领域的应用研究进展,并对未来智能水凝胶的发展方向做了展望。  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号