首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
用透射电子显微镜(TEM)、扫描电子显微镜(SEM)及电子能谱(EDS)表征了高抗冲聚苯乙烯(HIPS)基体中纳米TiO2粒子的分散,研究了HIPS/纳米TiO2复合材料中纳米粒子的分散对复合材料力学性能的影响。结果表明,EDS可较好地表征纳米TiO2的分散行为;在纳米HIPS/TiO2复合体系中,当纳米TiO2质量分数为1.0%时,纳米粒子在复合材料中呈较均匀分散,对HIPS基体起着提高强度和韧性的作用;随着纳米TiO2含量的提高,纳米粒子发生明显团聚,对HIPS的增强增韧作用减弱;TEM,SEM及EDS结合使用,可较好地表征纳米粒子在复合材料的分散行为。  相似文献   

2.
HIPS/TiO2/TAS纳米复合材料的制备及性能   总被引:15,自引:3,他引:12  
通过对纳米TiO2表面预处理及选择特定的大分子分散H(TAS)和母料法制备工艺制备了HIPS/TiO2/TAS纳米复合材料,测试结果表明,制备的HIPS/TiO2/TAS纳米复合材料较原HIPS具有更好的综合力力学性能,且较原HIPS的硬度、耐热性能、阻燃性能亦同时得到提高。  相似文献   

3.
新型纳米光触媒剂二氧化钛改性聚丙烯的研究   总被引:2,自引:0,他引:2  
采用一种新型的纳米光触媒剂二氧化钛(TiO2)来改性聚丙烯(PP),将无机纳米粒子通过熔融共混方法与PP复合制备了纳米TiO2/PP复合材料,利用透射电子显微镜(TEM)观察纳米粒子在聚丙烯基体中的分散效果,研究了纳米TiO2/PP复合材料的力学性能和抗菌性能。实验结果表明,填充量较少时纳米TiO2在PP基体中能够实现良好的分散。力学性能测试结果表明,填加质量分数为1%的纳米TiO2可以明显提高PP材料的抗冲击性能;纳米粒子质量分数在0~1%范围内对复合材料的拉伸强度几乎没有影响;而随着纳米光触媒剂TiO2的加入,PP具有良好的杀菌作用,并且随着TiO2含量的增加,复合材料的抗菌性能呈明显提高趋势。  相似文献   

4.
研究了HIPS/纳米TiO2复合材料的加工流动性、力学性能、吸光行为及抗菌性能。结果表明,当纳米TiO2含量为0.5%~2.0%时,HIPS/纳米TiO2复合材料的加工流动性优于纯HIPS;复合材料的冲击强度略有提高,拉伸强度、断裂伸长率及弯曲强度均有一定程度的降低;当纳米TiO2含量为1.0%左右时,复合材料制品的表面具有良好的紫外光吸收能力,较好的抗菌、分解内毒素作用及一定的表面自清洁功能。  相似文献   

5.
纳米TiO2的表面处理及聚丙烯/TiO2复合体系的研究   总被引:1,自引:1,他引:1  
孙阁彪  吴刚等 《中国塑料》2002,16(12):47-50
通过多种方法对纳米TiO2粒子进行了表面处理,深入探讨了纳米粒子的分散机理。制备了PP/TiO2复合材料,对此复合材料进行了力学性能测试和结构表征,讨论了分散度和复合材料性能的关系。结果表明:通过熔融共混法可以将经适当表面处理的纳米TiO2粒子均匀地分散在聚丙烯中,纳米TiO2粒子在4%用量时可以使聚丙烯的缺口冲击强度提高1倍,同时其拉伸强度也有很大提高。  相似文献   

6.
HIPS/纳米蒙脱土复合材料的研究   总被引:3,自引:0,他引:3  
添加不同种类,不同数量的纳米蒙脱土,混炼制得HIPS/纳米蒙脱土复合材料,以改善高抗冲聚苯乙烯(HIPS)的性能,测试了其力学性能,热稳定性性。结果表明,添加3%烘干的蒙脱土Cloisite 30A的HIPS/纳米蒙脱土复合材料具有较好的综合力学性能,可作为工程塑料使用;HIPS/纳米蒙脱土复合材料的热稳定性与阻燃性有所改善,添加5%烘干的蒙脱土Cloisite 15A的HIPS/纳米蒙脱土复合材料具有较好的阻燃性。  相似文献   

7.
纳米TiO2在抗菌解内毒素塑料中的应用   总被引:4,自引:0,他引:4  
王兆波  张志煜 《塑料》2004,33(1):12-15
探讨了纳米TiO2/HIPS复合材料的抗菌、分解内毒素、除异味、力学性能、老化性能和卫生指标。与普通抗菌剂比,纳米TiO2独具分解内毒素及除异味功效,且安全性高,属实际无毒;在光催化下,复合材料的抗菌、分解内毒素及除异味率可达90%以上;纳米含量1%时,对复合材料力学性能基本无影响,但可提高耐老化性,展示了良好的应用前景。  相似文献   

8.
纳米TiO2/PP复合材料的研究   总被引:17,自引:0,他引:17  
陶国良  侯寅  任明 《塑料工业》2002,30(1):21-22,29
研究了纳米TiO2/PP复合材料的力学性能和耐老化性能,实验结果表明,添加1%-2%的纳米TiO2可以明显改善PP材料的抗冲击性能;纳米质量分数在1%-4%范围内对复合材料的拉伸强度几乎没有影响;而添加少量的纳米TiO2可以大大提高PP材料的耐紫外光老化性能,说明纳米TiO2对紫外光有极强的吸收能力。TiO2/PP复合材料具有良好的耐候性,可以提高其户外制品的使用寿命。  相似文献   

9.
制备了不同聚乙烯醇浓度的聚乙烯醇缩丁醛(PVB),利用偶联剂和超声波分散法对纳米二氧化钛(TiO2)进行了表面处理,用共混法制备了PVB/纳米TiO2复合材料。采用红外光谱、X射线衍射、扫描电镜等表征了复合材料的红外吸收性能、光学性能、结构和微观形貌,测试了复合材料的力学性能。结果表明:由于纳米TiO2粒子的加入,复合材料的韧性得到明显提高,其断裂伸长率为纯PVB的6-8倍左右,同时使PVB/纳米TiO2复合材料具有良好的紫外线屏蔽性能。  相似文献   

10.
聚丙烯/纳米TiO2复合材料的紫外老化研究   总被引:2,自引:0,他引:2  
对聚丙烯(PP)/纳米TiO2复合材料的紫外老化进行了研究。力学性能、熔体粘度、熔融温度、红外光谱和扫描电镜对比试验的结果表明:PP/纳米TiO2复合材料的耐紫外老化性能比纯PP的大大提高,纳米TiO2是一种性能优异的PP抗老化剂。  相似文献   

11.
纳米二氧化钛填充橡胶复合材料的分散结构与性能   总被引:6,自引:0,他引:6  
用粒径为20~40nm的纳米二氧化钛(B—TiO2)填充天然橡胶(NR)和丁腈橡胶(NBR)制备了橡胶复合材料,研究了B—TiO2在橡胶基体中的分散结构、复合材料的力学性能以及抗菌性能,并与德国Degussa公司的催化剂纳米TiO2(D—TiO2)进行了对比。结果表明,B—TiO2在NR和NBR中表现出良好的分散,绝大多数B—TiO2在橡胶中聚集体尺寸小于100nm,特别是在NR中B—TiO2分散颗粒大小与其原生颗粒大小相近,明显优于D—TiO2在NR中的分散;在B—TiO2用量小的情况下,橡胶复合材料的力学性能基本不受B—TiO2的影响。D—TiO2对橡胶复合材料的老化性能也没有影响。橡胶基体中填充B—TiO2后,其抗菌性能明显提高,当用量超过2份(质量)时,其抗菌性能已经达到较高的水平;D—TiO2/NR抗菌效果与B—TiO2/NR的抗菌效果相当,热氧老化不影响橡胶复合材料中TiO2发挥其抗菌特性。  相似文献   

12.
讨论了纳米TiO2在线型低密度聚乙烯(LLDPE),低密度聚乙烯(LDPE)复合体系中的分散和体系流变行为,研究了复合薄膜的光学性能。结果表明,以高流动性LDPE为基体的纳米TiO2母料,加入LLDPE,LDPE体系中后。复合体系的表观粘度有所提高。但拉伸粘度显著下降。纳米TiO2母料在LLDPE/LDPE复合体系中具有良好的分散性,复合薄膜中的纳米TiO2为一次粒子。纳米TiO2起到了异相成核剂的作用。球晶的粒子得到细化。在本研究的纳米填充范围内(质量分数不大于1.0%),复合薄膜的透光度基本不变。雾度发生了较大幅度上升,复合薄膜在紫外光区域的吸收显著增强。  相似文献   

13.
利用偶联剂KH-550和超支化聚(胺-酯)(HBP)对纳米TiO2进行改性,并制备了纳米TiO2/环氧树脂(EP)复合材料。对复合材料的结构、力学性能、加工性能以及热性能进行了研究。研究结果表明,HBP接枝改性纳米TiO2(TiO2-g-HBP)的引入可明显提高复合材料的力学性能、热性能及加工性能;当w(TiO2-g-HBP)=1%时,复合材料的力学性能最好,其冲击强度和弯曲强度比纯EP分别提高了135.51%和22.98%;扫描电镜(SEM)结果显示,TiO2-g-HBP/EP复合材料由脆性断裂转变为韧性断裂。  相似文献   

14.
将无机纳米材料与聚丙烯(PP)熔融共混制备耐候性PP复合材料。采用透射电子显微镜、凝胶渗透色谱、红外光谱以及力学性能测试等手段研究了纳米二氧化钛(nano-TiO2)、纳米二氧化硅(nano-SiO2)、纳米氧化锌(nano-ZnO)等无机材料对PP抗紫外老化性的影响。结果表明,无机纳米材料的含量为0.3 %时,分散性最好,可促使PP力学性能提高;PP/nano-TiO2的抗紫外线老化性能最好,与纯PP相比,老化144 h后断裂伸长率保持率在波长为340 nm和313 nm紫外光源中分别提高了31.5 %和11.8 %。  相似文献   

15.
PP/TiO2纳米复合材料的研制及其抗老化机理分析   总被引:16,自引:1,他引:16  
制备了聚丙烯(PP)/TiO2纳米复合材料,用氙灯耐气候试验机对该复合材料进行人工加速老化试验。采用紫外一可见光光谱法分析了纳米TiO2等粉体材料的紫外吸收性能;分析了PP/TiO2纳米复合材料的红外光谱并探讨了抗老化机理;对比研究了纯PP和PP/TiO2纳米复合材料老化期间力学性能的变化规律。结果表明,纳米TiO2能赋予PP优异的耐候性能,延长制品的户外使用寿命。  相似文献   

16.
采用中空玻璃微珠(GB)、纳米TiO2单独或复合填充聚乙烯(PE),研究了GB、纳米TiO2含量对复合材料光反射性能和隔热性能的影响。结果表明:GB、纳米TiO2的加入明显提高了PE的反射性能和隔热性能;当GB/PE、TiO2/PE复合材料的比例分别为2/7、1/7时,两种复合材料综合隔热性能达到最佳值,与纯PE相比,辐照5 min后阻隔密室的升温幅度分别下降了16.8℃和16℃,GB与纳米TiO2具有协同隔热作用,GB/PE、TiO2/PE、TiO2/GB/PE 3种复合材料中,GB/TiO2/PE(2/1/7)体系的隔热性能最好,辐照5 min后阻隔密室的升温幅度只有6.8℃比,纯PE下降了22.4℃。  相似文献   

17.
近年来,环境污染问题越来越严重,光催化技术在处理污水和净化空气等方面发挥着重要的作用。本文通过差示扫描量热仪、电子万能拉伸试验机、可见分光光度计等仪器,主要研究不同纳米TiO2用量对PA6/TiO2-GO复合材料的热学性能、力学性能、光催化性能等的影响。通过研究发现:随纳米TiO2含量的增加,PA6/TiO2-GO复合材料的熔点逐渐降低,结晶度先增大后减小(复合材料的结晶度均大于纯PA6的结晶度);断裂强度逐渐减小,断裂伸长率逐渐增大;纳米TiO2对亚甲基蓝溶液的光催化降解能力越来越强。在相同纳米TiO2含量下,加入GO后能有效提高TiO2的光催化降解能力,光催化降解能力能提高10%左右。  相似文献   

18.
TiO2 nanoparticles were introduced into high‐impact polystyrene (HIPS) in the form of a master batch in which TiO2 was predispersed in composites of HIPS and ethylene–vinyl acetate copolymer (EVA) by melt compounding. The resulting materials were analyzed with a Rosand Precision rheometer, transmission electron microscopy, atomic force microscopy, and ultraviolet–visible light spectrophotometry. The results showed that the introduction of TiO2 nanoparticles into HIPS influenced the apparent viscosity of the composites to a rather small extent. The addition of EVA could regulate the rheological behavior of the HIPS/TiO2 master batch greatly. EVA helped the dispersions of the agglomerates of TiO2 nanoparticles in the flow; this was featured by the distinct yielding in the flow after the introduction of EVA, as well as the large change in the non‐Newtonian indices. The dispersions of the HIPS/TiO2 master batch in the HIPS matrix were improved greatly by the addition of EVA. TiO2 nanoparticles were dispersed randomly in HIPS/EVA/TiO2 nanocomposites. The dispersion improvement of the HIPS/EVA/TiO2 master batch was also proved by atomic force microscopy and ultraviolet–visible spectroscopy investigations. The mechanical properties of HIPS/EVA/TiO2 nanocomposites with low TiO2 contents were slightly higher than those of pure HIPS. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4434–4438, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号