首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effective query aggregation for data services in sensor networks   总被引:1,自引:0,他引:1  
Wei  Thang Nam  Jangwon  Dong   《Computer Communications》2006,29(18):3733-3744
Providing efficient data services has been required by many sensor network applications. While most existing work in this area focuses on data aggregation, not much attention has been paid to query aggregation. For many applications, especially ones with high query rates, query aggregation is very important. In this paper, we study a query aggregation-based approach to provide efficient data services. In particular: (1) we propose a multi-layer overlay-based framework consisting of a query manager and access points (nodes), where the former provides the query aggregation plan and the latter executes the plan; (2) we design an effective query aggregation algorithm to reduce the number of duplicate/overlapping queries and save overall energy consumption in the sensor network. We also design protocols to effectively deliver aggregated queries and query results in the sensor network. Our performance evaluations show that by applying our query aggregation algorithm, the overall energy consumption can be significantly reduced and the sensor network lifetime can be prolonged correspondingly.  相似文献   

2.
Sensor networks consist of battery-powered wireless devices that are required to operate unattended for long periods of time. Thus, reducing energy drain is of utmost importance when designing algorithms and applications for such networks. Aggregate queries are often used by monitoring applications to assess the status of the network and detect abnormal behavior. Since radio transmission often constitutes the biggest factor of energy drain in a node, in this paper we propose novel algorithms for the evaluation of bandwidth- constrained queries over sensor networks. The goal of our techniques is, given a target bandwidth utilization factor, to program the sensor nodes in a way that seeks to maximize the accuracy of the produced query results at the monitoring node, while always providing strong error guarantees to the monitoring application. This is a distinct difference of our framework from previous techniques that only provide probabilistic guarantees on the accuracy of the query result. Our algorithms are equally applicable when the nodes have ample power resources, but bandwidth consumption needs to be minimized, for instance in densely distributed networks, to ensure proper operation of the nodes. Our experiments with real sensor data show that bandwidth-constrained queries can substantially reduce the number of messages in the network while providing very tight error bounds on the query result.  相似文献   

3.
4.
Sensors are often employed to monitor continuously changing entities like locations of moving objects and temperature. The sensor readings are reported to a database system, and are subsequently used to answer queries. Due to continuous changes in these values and limited resources (e.g., network bandwidth and battery power), the database may not be able to keep track of the actual values of the entities. Queries that use these old values may produce incorrect answers. However, if the degree of uncertainty between the actual data value and the database value is limited, one can place more confidence in the answers to the queries. More generally, query answers can be augmented with probabilistic guarantees of the validity of the answers. In this paper, we study probabilistic query evaluation based on uncertain data. A classification of queries is made based upon the nature of the result set. For each class, we develop algorithms for computing probabilistic answers, and provide efficient indexing and numeric solutions. We address the important issue of measuring the quality of the answers to these queries, and provide algorithms for efficiently pulling data from relevant sensors or moving objects in order to improve the quality of the executing queries. Extensive experiments are performed to examine the effectiveness of several data update policies.  相似文献   

5.
There is a growing interest in applications that utilize continuous sensing of individual activity or context, via sensors embedded or associated with personal mobile devices (e.g., smartphones). Reducing the energy overheads of sensor data acquisition and processing is essential to ensure the successful continuous operation of such applications, especially on battery-limited mobile devices. To achieve this goal, this paper presents a framework, called ACQUA, for ‘acquisition-cost’ aware continuous query processing. ACQUA replaces the current paradigm, where the data is typically streamed (pushed) from the sensors to the one or more smartphones, with a pull-based asynchronous model, where a smartphone retrieves appropriate blocks of relevant sensor data from individual sensors, as an integral part of the query evaluation process. We describe algorithms that dynamically optimize the sequence (for complex stream queries with conjunctive and disjunctive predicates) in which such sensor data streams are retrieved by the query evaluation component, based on a combination of (a) the communication cost & selectivity properties of individual sensor streams, and (b) the occurrence of the stream predicates in multiple concurrently executing queries. We also show how a transformation of a group of stream queries into a disjunctive normal form provides us with significantly greater degrees of freedom in choosing this sequence, in which individual sensor streams are retrieved and evaluated. While the algorithms can apply to a broad category of sensor-based applications, we specifically demonstrate their application to a scenario where multiple stream processing queries execute on a single smartphone, with the sensors transferring their data over an appropriate PAN technology, such as Bluetooth or IEEE 802.11. Extensive simulation experiments indicate that ACQUA’s intelligent batch-oriented data acquisition process can result in as much as 80 % reduction in the energy overhead of continuous query processing, without any loss in the fidelity of the processing logic.  相似文献   

6.
In wireless sensor networks (WSNs), energy is valuable because it is scarce. This causes their life time to be determined by their ability to use the available energy in an effective and frugal manner. In most of the earlier sensor network applications, the main requirement consisted mainly of data collection but transmitting all of the raw data out of the network may be prohibitively expensive (in terms of communication) or impossible at given data collection rates.In the last decade, the use of the database paradigm has emerged as a feasible solution to manage data in a WSN context. There are various sensor network query processors (SNQPs) (implementing in-network declarative query processing) that provide data reduction, aggregation, logging, and auditing facilities. These SNQPs view the wireless sensor network as a distributed database over which declarative query processor can be used to program a WSN application with much less effort. They allow users to pose declarative queries that provide an effective and efficient means to obtain data about the physical environment, as users would not need to be concerned with how sensors are to acquire the data, or how nodes transform and/or transmit the data.This paper surveys novel approaches of handling query processing by the current SNQP literature, the expressiveness of their query language, the support provided by their compiler/optimizer to generate efficient query plans and the kind of queries supported. We introduce the challenges and opportunities of research in the field of in-network sensor network query processing as well as illustrate the current status of research and future research scopes in this field.  相似文献   

7.
A wireless sensor network (WSN) is composed of tens or hundreds of spatially distributed autonomous nodes, called sensors. Sensors are devices used to collect data from the environment related to the detection or measurement of physical phenomena. In fact, a WSN consists of groups of sensors where each group is responsible for providing information about one or more physical phenomena (e.g., group for collecting temperature data). Sensors are limited in power, computational capacity, and memory. Therefore, a query engine and query operators for processing queries in WSNs should be able to handle resource limitations such as memory and battery life. Adaptability has been explored as an alternative approach when dealing with these conditions. Adaptive query operators (algorithms) can adjust their behavior in response to specific events that take place during data processing. In this paper, we propose an adaptive in-network aggregation operator for query processing in sensor nodes of a WSN, called ADAGA (ADaptive AGgregation Algorithm for sensor networks). The ADAGA adapts its behavior according to memory and energy usage by dynamically adjusting data-collection and data-sending time intervals. ADAGA can correctly aggregate data in WSNs with packet replication. Moreover, ADAGA is able to predict non-performed detection values by analyzing collected values. Thus, ADAGA is able to produce results as close as possible to real results (obtained when no resource constraint is faced). The results obtained through experiments prove the efficiency of ADAGA.  相似文献   

8.
In this paper, a new approach has been introduced that integrates an evolutionary-based mechanism with a distributed query sensor cover algorithm for optimal query execution in self-organized wireless sensor networks (WSN). An algorithm based on an evolutionary technique is proposed, with problem-specific genetic operators to improve computing efficiency. Redundancy within a sensor network can be exploited to reduce the communication cost incurred in execution of spatial queries. Any reduction in communication cost would result in an efficient use of battery energy, which is very limited in sensors. Our objective is to self-organize the network, in response to a query, into a topology that involves an optimal subset of sensors that is sufficient to process the query subject to connectivity, coverage, energy consumption, cover size and communication overhead constraints. Query processing must incorporate energy awareness into the system by reducing the total energy consumption and hence increasing the lifetime of the sensor cover, which is beneficial for large long running queries. Experiments have been carried out on networks with different sensors Transmission radius, different query sizes, and different network configurations. Through extensive simulations, we have shown that our designed technique result in substantial energy savings in a sensor network. Compared with other techniques, the results demonstrated a significant improvement of the proposed technique in terms of energy-efficient query cover with lower communication cost and lower size.  相似文献   

9.
Top-k monitoring queries are useful in many wireless sensor network applications. A query of this type continuously returns a list of k ordered nodes with the highest (or lowest) sensor readings. To process these queries, a well-known approach is to install a filter at each sensor node to avoid unnecessary transmissions of sensor readings. In this paper, we propose a new top-k monitoring method, named Distributed Adaptive Filter-based Monitoring. In this method, we first propose a new query reevaluation algorithm that works distributedly in the network to reduce the communication cost of sending probe messages. Then, we present an adaptive filter updating algorithm which is based on predicted benefits to lower down the transmission cost of sending updated filters to the sensor nodes. Experimental results on real data traces show that our proposed method performs much better than the other existing methods in terms of both network lifetime and average energy consumption.  相似文献   

10.
Wireless sensor networks are an effective tool to provide fine resolution monitoring of the physical environment. Sensors generate continuous streams of data, which leads to several computational challenges. As sensor nodes become increasingly active devices, with more processing and communication resources, various methods of distributed data processing and sharing become feasible. The challenge is to extract information from the gathered sensory data with a specified level of accuracy in a timely and power-efficient approach. This paper presents a new solution to distributed information extraction that makes use of the morphological Watershed algorithm. The Watershed algorithm dynamically groups sensor nodes into homogeneous network segments with respect to their topological relationships and their sensing-states. This setting allows network programmers to manipulate groups of spatially distributed data streams instead of individual nodes. This is achieved by using network segments as programming abstractions on which various query processes can be executed. Aiming at this purpose, we present a reformulation of the global Watershed algorithm. The modified Watershed algorithm is fully asynchronous, where sensor nodes can autonomously process their local data in parallel and in collaboration with neighbouring nodes. Experimental evaluation shows that the presented solution is able to considerably reduce query resolution cost without scarifying the quality of the returned results. When compared to similar purpose schemes, such as “Logical Neighborhood”, the proposed approach reduces the total query resolution overhead by up to 57.5%, reduces the number of nodes involved in query resolution by up to 59%, and reduces the setup convergence time by up to 65.1%.  相似文献   

11.
Optimized query routing trees for wireless sensor networks   总被引:1,自引:0,他引:1  
In order to process continuous queries over Wireless Sensor Networks (WSNs), sensors are typically organized in a Query Routing Tree (denoted as T) that provides each sensor with a path over which query results can be transmitted to the querying node. We found that current methods deployed in predominant data acquisition systems construct T in a sub-optimal manner which leads to significant waste of energy. In particular, since T is constructed in an ad hoc manner there is no guarantee that a given query workload will be distributed equally among all sensors. That leads to data collisions which represent a major source of energy waste. Additionally, current methods only provide a topological-based method, rather than a query-based method, to define the interval during which a sensing device should enable its transceiver in order to collect the query results from its children. We found that this imposes an order of magnitude increase in energy consumption.  相似文献   

12.
Model-based approximate querying in sensor networks   总被引:1,自引:0,他引:1  
Declarative queries are proving to be an attractive paradigm for interacting with networks of wireless sensors. The metaphor that “the sensornet is a database” is problematic, however, because sensors do not exhaustively represent the data in the real world. In order to map the raw sensor readings onto physical reality, a model of that reality is required to complement the readings. In this article, we enrich interactive sensor querying with statistical modeling techniques. We demonstrate that such models can help provide answers that are both more meaningful, and, by introducing approximations with probabilistic confidences, significantly more efficient to compute in both time and energy. Utilizing the combination of a model and live data acquisition raises the challenging optimization problem of selecting the best sensor readings to acquire, balancing the increase in the confidence of our answer against the communication and data acquisition costs in the network. We describe an exponential time algorithm for finding the optimal solution to this optimization problem, and a polynomial-time heuristic for identifying solutions that perform well in practice. We evaluate our approach on several real-world sensor-network datasets, taking into account the real measured data and communication quality, demonstrating that our model-based approach provides a high-fidelity representation of the real phenomena and leads to significant performance gains versus traditional data acquisition techniques. This article includes and extends results that were previously published in VLDB 2004 [Desphande, A., Guestrin, C., Madden, S., Hellerstein, J.M., Hong, W.: Model-driven data acquisition in sensor networks. In {VLDB} (2004)], and combines these techniques with the conditional planning approach published in ICDE 2005 [Deshpande, A., Guestrin, C., Madden, S., Hong, W.: Exploiting correlated attributes in acquisitional query processing. In {ICDE} (2005)].  相似文献   

13.
Top-k query in a wireless sensor network is to find the k sensor nodes with the highest sensing values. To evaluate the top-k query in such an energy-constrained network poses great challenges, due to the unique characteristics imposed on its sensors. Existing solutions for top-k query in the literature mainly focused on energy efficiency but little attention has been paid to the query response time and its effect on the network lifetime. In this paper we address the query response time and its effect on the network lifetime through the study of the top-k query problem in sensor networks with the response time constraint. We aim at finding an energy-efficient routing tree and evaluating top-k queries on the tree such that the network lifetime is significantly prolonged, provided that the query response time constraint is met too. To do so, we first present a cost model of energy consumption for answering top-k queries and introduce the query response time definition. We then propose a novel joint query optimization framework, which consists of finding a routing tree in the network and devising a filter-based evaluation algorithm for top-k query evaluation on the tree. We finally conduct extensive experiments by simulation to evaluate the performance of the proposed algorithms, in terms of the total energy consumption, the maximum energy consumption among nodes, the query response time, and the network lifetime. The experimental results showed that there is a non-trivial tradeoff between the query response time and the network lifetime, and the joint query optimization framework can prolong the network lifetime significantly under a specified query response time constraint.  相似文献   

14.
We investigate the problem of processing historical queries on a sensor network. Since data is considered to have been already collected at the sensor nodes, the main issue is exploring the spatial component of the query in order to minimize its cost represented by the energy consumption. We assume queries can be issued at any network node, i.e., there is no central base station and all nodes have only local knowledge of the network. On the one hand, a globally optimum query processing plan is desirable but its construction is not possible due to the lack of global knowledge of the network. On the other hand, while a simple network flooding is feasible, it is not a practical choice from a cost perspective. To address this problem we propose a two-phase query processing strategy, where in the first phase a path from the query originator to the query region is found and in the second phase the query is processed within the query region itself. This strategy is supported by analytical models that are used to dynamically select the best processing strategy depending on the query specifics. Our extensive analytical and experimental results show that our analytical models are accurate and that the two-phase strategy is better suited for small to medium sized queries, being up to 10 times more cost effective than a typical network flooding. In addition, the dynamic selection of a query processing technique proved itself capable of always delivering at least as good performance as the most energy efficient strategy for all query sizes. Research supported in part by NSERC Canada.  相似文献   

15.
We discuss about the IrisNet (Internet-scale resource-intensive sensor network services) project at Intel Research, we design an architecture and build a system that enable easy deployment of such wide-area sensing services. We aim to provide the missing software components for realizing a worldwide sensor Web. Wide-area architectures for pervasive sensing enable a new generation of powerful distributed sensing services. A worldwide sensor Web, in which users can query, as a single unit, vast quantities of data from thousands or even millions of widely distributed, heterogeneous sensors. Internet-connected PCs that source sensor feeds and cooperate to answer users' queries will form the global sensor Web's backbone. Developers of wide-area sensing services (service authors) deploy the services on this distributed infrastructure.  相似文献   

16.
The recent evolution in sensor node location technology has spurred the development of a special type of in-network processing for wireless sensor networks (WSN), called spatial query processing. These queries require data from nodes within a region (called region of interest) defined by the users. The state of the art of spatial query processing considers, in general, that nodes are always on. However, nodes can go to sleep mode (turn off the radio in duty cycles) in order to save energy. This work proposes an energy-efficient in-network spatial query processing mechanism that assumes nodes having no knowledge about their neighbors. The proposed mechanism is able to process spatial queries without the necessity of periodic beacon transmissions for neighbor table updates or for synchronization. Hence, it can work properly over different types of duty cycle algorithms.  相似文献   

17.
Sensor technology has been exploited in many application areas ranging from climate monitoring, to traffic management, and healthcare. The role of these sensors is to monitor human beings, the environment or instrumentation and provide continuous streams of information regarding their status or well being. In the case study presented in this work, the network is provided by football teams with sensors generating continuous heart rate values during a number of different sporting activities. In wireless networks such as these, the requirement is for methods of data management and transformation in order to present data in a format suited to high level queries. In effect, what is required is a traditional database-style query interface where domain experts can continue to probe for the answers required in more specialised environments. The challenge arises from the gap that emerges between the low level sensor output and the high level user requirements of the domain experts. This paper describes a process to close this gap by automatically harvesting the raw sensor data and providing semantic enrichment through the addition of context data.  相似文献   

18.
无线传感器网络数据环区域查询处理算法   总被引:1,自引:0,他引:1  
针对无线传感器网络节点能量高效问题以及Skyline查询位置属性决策问题,提出了基于无线传感器网络数据环区域查询处理算法。该算法以查询位置P为中心进行数据环划分,查询位置P最近的K个Skyline值时,根据剪枝策略只需对距离小于P的其它属性值进行比较,从而缩小了数据规模,提高了查询效率。另外,环内节点采用链簇式结构组织,环内查询处理过程采用串行数据处理与并行数据处理模式,从而提高了K-Skyline的数据查询能耗与节点处理延迟。仿真实验表明,数据环区域查询处理算法比Flooding算法与TAG算法具有更小的数据处理能耗和延迟。  相似文献   

19.
Towards Spatial Window Queries Over Continuous Phenomena in Sensor Networks   总被引:2,自引:0,他引:2  
Recent research on sensor networks has focused on the efficient processing of declarative SQL queries over sensor nodes. Users are often interested in querying an underlying continuous phenomenon such as a toxic plume, whereas only discrete readings of sensor nodes are available. Therefore, additional information estimation methods are necessary to process the sensor readings to generate the required query results. Most estimation methods are computationally intensive, even when computed in a traditional centralized setting. Furthermore, energy and communication constraints of sensor networks challenge the efficient application of established estimation methods in sensor networks. In this paper, we present an approach using Gaussian kernel estimation to process spatial window queries over continuous phenomena in sensor networks. The key contribution of our approach is the use of a small number of Hermite coefficients to approximate the Gaussian kernel function for subclustered sensor nodes. As a result, our algorithm reduces the size of messages transmitted in the network by logarithmic order, thus saving resources while still providing high-quality query results.  相似文献   

20.
The similarity search problem has received considerable attention in database research community. In sensor network applications, this problem is even more important due to the imprecision of the sensor hardware, and variation of environmental parameters. Traditional similarity search mechanisms are both improper and inefficient for these highly energy-constrained sensors. A difficulty is that it is hard to predict which sensor has the most similar (or closest) data item such that many or even all sensors need to send their data to the query node for further comparison. In this paper, we propose a similarity search algorithm (SSA), which is a novel framework based on the concept of Hilbert curve over a data-centric storage structure, for efficiently processing similarity search queries in sensor networks. SSA successfully avoids the need of collecting data from all sensors in the network in searching for the most similar data item. The performance study reveals that this mechanism is highly efficient and significantly outperforms previous approaches in processing similarity search queries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号