首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
《炼铁》2015,(5)
对安钢1号高炉缸侧壁温度异常升高的治理经验进行了总结。1号高炉缸侧壁温度异常升高的原因主要是炉缸冷却壁与炭砖之间存在气隙、强化冶炼程度大,以及炉缸存在"象脚"状侵蚀。通过实施常规护炉措施,并配加含钛炉料进行护炉,1号高炉炉缸侧壁温度上升的势头得到有效的遏制,并把温度控制在安全范围之内。实践表明,以含钛炉料护炉技术为中心的综合护炉技术,对于延长炉役后期的高炉寿命是有效的。  相似文献   

2.
对济钢2号1 750m~3高炉炉缸侧壁温度异常升高的原因及处理进行了总结分析。认为冷却壁大量破损漏水、渣铁环流是导致炉缸侧壁温度升高的主要原因,通过采用炉缸灌浆、风口喂线与钒钛矿护炉、优化操作制度等一系列措施,取得明显成效。  相似文献   

3.
《炼铁》2018,(4)
对邯钢7号高炉(2000m~3)炉役后期钛矿护炉生产实践进行了总结。针对高炉炉缸侧壁温度异常升高现象,通过先采取降低冶炼强度、加大冷却强度、调整下部送风制度等措施控制了侧壁温度升高的趋势,再采取配加钛矿护炉的措施,两周后炉缸侧壁温度由628℃下降到320℃,实现了炉役后期高炉的安全生产。认为钛矿护炉后适当进行凉炉,有利于钛的沉积,便于形成稳定的炉缸凝结层。  相似文献   

4.
介绍了梅钢3200m~3高炉炉缸炉底结构的设计特点,计算了炉缸1150℃等温线的分布情况,分析了炉缸侧壁温度升高的原因。通过加强原燃料管控、改善冷却效果、强化渣铁处理及炉缸压浆等措施,炉缸侧壁温度回归到了正常水平。  相似文献   

5.
《炼铁》2014,(1)
对迁钢3号高炉炉缸侧壁温度升高的治理实践进行了总结。主要采取了产能控制、高钛护炉、合理控制风口面积与风速等措施,抑制炉缸侧壁温度的异常升高,并俣理运用多种操作手段,强化护炉效果。  相似文献   

6.
解虎航  王纪民  同文义 《炼铁》2019,38(2):50-53
汉钢2280m~3高炉炉缸侧壁07B、05B两点温度异常升高,最高温度分别达到957℃、856℃,严重威胁高炉的安全生产。简要分析了炉缸侧壁温度升高的原因,通过采取钒钛矿护炉、优化高炉操作制度、灌浆封堵、调整冷却制度、加强铁口维护和出铁管理等多方面措施,达到先稳定后降低炉缸侧壁温度的目的。截至2018年9月15日,炉缸侧壁07B、05B两点温度已分别降至423℃、411℃,高温点温度得到有效控制,消除了生产中的安全隐患。  相似文献   

7.
汉钢2 280 m~3高炉为解决炉缸侧壁温度升高、原燃料质量差、炉缸不活、关键经济技术指标差状况,通过更换加长风口套,优化高炉操作制度,强化精料管理,加强炉前出铁和高炉操作等,活跃了炉缸,有效降低了炉缸侧壁温度、提升了高炉关键经济技术指标,在兼顾生产的同时确保了高炉安全生产运行。  相似文献   

8.
黄泽海谢勤 《炼铁》2021,40(6):46-48
酒钢1号高炉炉缸侧壁北铁口、南铁口下方等处温度持续上升,点TE2507B最高达到923℃,威胁到安全生产.炉缸冷却壁与炭砖之间存在气隙、炉况较长时间存在异常、有害元素偏高、冶炼强度逐步增加是炉缸侧壁温度升高的主要原因.通过采取含钛炉料护炉、堵风口、优化高炉操作制度、灌浆及加强铁口维护等措施,炉缸侧壁温度上升趋势得到有效...  相似文献   

9.
徐万仁  朱仁良  张龙来  张永忠 《钢铁》2007,42(1):8-11,16
通过分析宝钢2号高炉炉缸侧壁温度屡次升高的原因和操作实践的总结,证实铁水环流加剧是大型高炉炉缸侧壁侵蚀的主要原因.通过在正常生产中实施活跃炉缸操作、强化中心气流、控制炉底温度下降和加强铁口维护等操作方法,2号高炉成功地解决了炉缸侧壁侵蚀难题,效果显著.同时表明,加钛矿对维护炉底作用显著,而对控制侧壁侵蚀效果不大.  相似文献   

10.
张建  林超  杨柳  王牧麒 《中国冶金》2019,29(12):59-63
炉缸的运行状况对高炉长寿起着决定性作用。首钢京唐2号高炉2017年8月开始炉缸侧壁温度急剧上升,对高炉的正常生产和人员安全提出了严峻考验。炉缸侧壁高温点的位置坐标表明,首钢京唐2号高炉炉缸侧壁温度异常升高的直接原因是炉缸内部铁水环流加剧对炉缸内衬的化学侵蚀和物理冲刷。进一步从铁水成分、炉底温度、铁口深度和铁水流速等因素分析,证实了2号高炉炉缸侧壁温度升高的根源在于炉缸活跃性恶化。此外,较高的硫负荷和焦炭灰分、较低的终渣碱度及水箱漏水等因素也在一定程度上促成了炉缸不活的状态。  相似文献   

11.
《炼铁》2016,(4)
邯宝1号3200m~3高炉炉缸侧壁温度出现周期性升高,有两点的温度更是达到793℃和600℃。炉缸侧壁温度升高的原因主要是:炉墙存在气隙、陶瓷杯侵蚀脱落、碱金属侵蚀、焦炭质量变差等。通过采取加强原燃料管理、优化操作参数、控制冶炼强度、加强炉缸活度的管理、加强出铁管理、建立炉缸检测保护体系、炉体灌浆等一系列措施,炉缸侧壁温度均下降至250℃以下,处于安全可控水平,治理效果明显。  相似文献   

12.
《炼铁》2016,(6)
对湘钢4号高炉炉缸侧壁温度异常升高的原因及护炉措施进行了总结。4号高炉炉缸侵蚀的主要原因在于,当生产条件发生变化时各项操作制度没有随之做出调整,操作制度与生产条件不匹配。通过采取强化铁口维护、钛矿护炉、调整送风及布料制度、增加冷却强度、降低冶炼强度等措施,8个月后炉缸温度逐渐下降至正常水平,高炉生产趋于稳定。  相似文献   

13.
对韶钢8号高炉炉缸侧壁温度升高的过程进行总结,剖析了6号高炉铁口区域侧壁温度升高的危害,在处理炉缸侧壁温度升高的实践中,得到了可以采取的有效措施,为高炉炉缸安全长寿管理技术提供了宝贵的经验。  相似文献   

14.
《炼铁》2014,(5)
对新冶钢1780m~3高炉炉缸侧壁温度异常升高的处理进行了总结。通过采取含钛矿护炉、合理调整风口布局、强化中心煤气流、强化炉体冷却、加强铁口维护等一系列措施,炉缸侧壁温度得到了有效控制,护炉效果明显,为高炉实现长寿的目标奠定基础。  相似文献   

15.
简要论述了汉钢2号高炉炉缸侧壁3个点温度异常升高到危险状态时,高炉采取了提升精料水平、优化冶炼制度和操作管理、加强监控、钛矿护炉、强化冷却和灌浆等有效护炉措施,取得了成功护炉和稳定产量的双重效果。  相似文献   

16.
张俊伟  贾新  林春山  王荣刚  张小林  尚栋 《炼铁》2023,(2):25-28+32
首钢股份3号高炉中修开炉后,炉缸侧壁局部温度持续上升,TE31349点热电偶温度最高升至439℃。认为炉缸中心不活跃、炉温维持较低水平、风口损坏漏水对炉缸侧壁和炉底砖衬薄弱部位的侵蚀加剧是炉缸侧壁温度升高的主要原因。通过采取加钛矿护炉、调整高炉操作制度、加大冷却强度、优化炉前操作等措施,炉缸侧壁温度普遍下降,TE31349点热电偶温度得以控制,稳定在120℃左右;2020年6—10月,高炉主要技术经济指标明显改善,特别是燃料比由545.68kg/t下降至513.12kg/t。  相似文献   

17.
简要分析了湘钢1号高炉炉缸侧壁温度升高的原因,重点阐述了侧壁温度升高的治理措施。认为,长期高强度冶炼加剧了渣铁对炭砖的冲刷,炭砖受到侵蚀是导致1号高炉炉缸侧壁温度升高的根本原因。通过采取提高冷却强度、使用钒钛炮泥和钒钛球护炉、降低冶炼强度、调整风口布局等措施,1号高炉炉缸侧壁温度降到了报警值以内,803C点温度稳定在520℃左右,703C点温度稳定在650℃并呈继续下降趋势,炉缸侵蚀得到有效控制。  相似文献   

18.
邯钢1号高炉(3200m~3)安全、高效、稳定运行已超过了9年,其长寿经验是:①合理运用操作制度保持高炉长期稳定顺行,维持合理的煤气流分布,保证炉缸活跃,减少对炉缸侧壁的侵蚀;②加强原燃料质量管控及严控有害元素的入炉和富集,调整入炉料制结构,最大限度地控制入炉碱金属负荷;③严密监视炉体的侵蚀情况,利用检修机会对温度异常的位置进行压浆修补,确保高炉长寿。  相似文献   

19.
韦欢  李恒照  张红丽  杨方 《河南冶金》2011,(4):36-37,53
分析炉缸温度异常的原因,发现炉缸温度异常与高炉工作状况、操作制度、冷却制度有关,针对产生炉缸温度异常的不同原因采取相应的解决办法,确保了高炉的稳定生产并延长高炉寿命,并结合安钢生产实例,对炉缸温度异常做出判断并给出解决方案.  相似文献   

20.
为了进一步明确柳钢4号高炉炉缸侧壁温度升高原因和炉缸侵蚀状态,通过对柳钢4号高炉炉缸结构设计、原燃料质量和生产参数进行调研分析,结合炉缸侧壁温度的变化规律和炭砖残厚的计算,分析了炉缸侧壁温度升高原因及侵蚀状态。结果表明,4号高炉炉缸冷却能力和炉缸侧壁温度监测仍有待加强;除侧壁炭砖侵蚀外,原燃料质量波动和冶炼强度增大等也是炉缸侧壁温度上升的重要原因;炉缸侵蚀最为严重的部位在铁口中心线以下1.9 m的位置,表现为“象脚”侵蚀。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号