首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper investigates the potential of self-timed property of differential cascode voltage switch logic (DCVSL) circuits, and examines architectural techniques for achieving self-timing in DCVSL circuits. As a result, a fast and robust handshake scheme for dynamic asynchronous circuit design is proposed. It is novel and more general than other similar schemes. The proposed self-timed datapath scheme is verified by an 8-bit divider which is implemented using AMS 0.6-μm CMOS technology, and the chip size is about 1.66 mm×1.70 mm. The chip testing results show that the divider functions correctly and the latency for 8-bit quotient-digit generation is 17 ns (about 58.8 MHz)  相似文献   

2.
This paper describes 3.3-V BiCMOS circuit techniques for a 120-MHz RISC microprocessor. The processor is implemented in a 0.5-μm BiCMOS technology with 4-metal-layer structure. The chip includes a 240 MFLOPS fully pipelined 64-b floating point datapath, a 240-MIPS integer datapath, and 24 KB cache, and contains 2.8 million transistors. The processor executes up to four operations at 120 MHz and dissipates 17 W. Novel BiCMOS circuits, such as a 0.6-ns single-ended common base sense amplifier, a 0.46-ns 22-b comparator, and a 0.7-ns path logic adder are applied to the processor. The processor with the proposed BiCMOS circuits has a 11%-47% shorter delay time advantage over a CMOS microprocessor  相似文献   

3.
A four-bit full adder circuit implemented in resistor coupled Josephson logic (RCJL) has been designed and successfully tested with 173-ps critical path delay. The full adder circuit uses dual rail logic with emphasis on high-speed operation. An experimental four-bit adder circuit was fabricated using lead-alloy Josephson IC technology with a 5-µm minimum feature size and a 7-µm minimum junction diameter. The circuit consists of 80 devices with 264 junctions. The minimum critical path delay for the ripple carry adder was measured to be 173 ps/4 bits. This result demonstrates the RCJL potential for high-speed digital applications.  相似文献   

4.
BiCMOS standard cell macros, including a 0.5-W 3-ns register file, a 0.6-W 5-ns 32-kbyte cache, a 0.2-W 3-ns table look-aside buffer (TLB), and a 0.1-W 3-ns adder, are designed with a 0.5-μm BiCMOS technology. A supply voltage of 3.3 V is used to achieve low power consumption. Several BiCMOS/CMOS circuits, such as a self-aligned threshold inverter (SATI) sense amplifier and an ECL HIT logic are used to realize high-speed operation at the low supply voltage. The performance of the BiCMOS macros is verified using a fabricated test chip  相似文献   

5.
We have developed dual path all-N logic (DPANL) and applied it to 32-bit adder design for higher performance. The speed is significantly enhanced due to reduced capacitance at each evaluation node of dynamic circuits. The power saving is achieved due to reduced adder cell size and minimal race problem. Post-layout simulation results show that this adder can operate at frequencies up to 1.85 GHz for 0.35-/spl mu/m 1P4M CMOS technology and is 32.4% faster than the adder using all-N transistor (ANT). It also consumes 29.2% less power than the ANT adder. A 0.35-/spl mu/m CMOS chip has been fabricated and tested to verify the functionality and performance of the DPANL adder on silicon.  相似文献   

6.
Describes a novel system level design for a 32-word by 32-bit bipolar register file with two read ports and one write port. The register file is implemented using a SiGe HBT BiCMOS technology and emitter-coupled logic (ECL)-style circuits. It has dimensions of 1.0 mm by 1.8 mm. The read access time for the register Me is between 340 and 350 ps using read port A, while the read access time using read port B is between 360 and 380 ps. Read access times as low as 290 ps were measured for some columns, however. The write access time for the register file is between 250 and 340 ps, using a write enable pulse with a width between 130 and 170 ps. The estimated register file power dissipation is 4.7 W using a 4.5-V supply  相似文献   

7.
This paper proposed a rail to rail swing, mixed logic style 28-transistor 1-bit full adder circuit which is designed and fabricated using silicon-on-insulator (SOI) substrate with 90 nm gate length technology. The main goal of our design is space application where circuits may be damaged by outer space radiation; so the irradiation-hardened technique such as SOI structure should be used. The circuit’s delay, power and power–delay product (PDP) of our proposed gate diffusion input (GDI)-based adder are HSPICE simulated and compared with other reported high-performance 1-bit adder. The GDI-based 1-bit adder has 21.61% improvement in delay and 18.85% improvement in PDP, over the reported 1-bit adder. However, its power dissipation is larger than that reported with 3.56% increased but is still comparable. The worst case performance of proposed 1-bit adder circuit is also seen to be less sensitive to variations in power supply voltage (VDD) and capacitance load (CL), over a wide range from 0.6 to 1.8 V and 0 to 200 fF, respectively. The proposed and reported 1-bit full adders are all layout designed and wafer fabricated with other circuits/systems together on one chip. The chip measurement and analysis has been done at VDD = 1.2 V, CL = 20 fF, and 200 MHz maximum input signal frequency with temperature of 300 K.  相似文献   

8.
A high speed and low power 8-bit carry-lookahead adder using two-phase modified dual-threshold voltage (dual-Vt) domino logic blocks which are arranged in a programmable logical array-like design style with pipelining is presented. The modified domino logic circuits employ dual-transistors and reversed bulk-source biases for reducing subthreshold leakage current when advanced deep submicrometer process is used. Moreover, an nMOS transistor is inserted in the discharging path of the output inverter such that the modified domino logic can be properly applied in a pipeline structure to reduce the power consumption. The addition of two 8-bit binary operands is executed in two cycles. Not only is it proven to be also suitable for long adders, the dynamic power consumption is also drastically reduced by more than 10% by the measurement results on silicon.  相似文献   

9.
This paper describes the design, testing, and operation of a 4-bit multiplier circuit based on Josephson tunneling logic (JTL) gates. The algorithm adopted was that of a simple serial 4-bit multiplier consisting of a 4-bit adder with ripple carry, together with a four phase, 8-bit accumulator shift register. The circuit, fabricated using a 25-/spl mu/m minimum linewidth technology, operated with a minimum cycle time of 6.67 ns (a limit imposed by the external test equipment) giving a 4-bit multiplication time of 27 ns with an average power dissipation of 35 /spl mu/W per logic gate. With better external pulse generators, or internal Josephson junction generators, the present circuit has been simulated to operate with a 3.0-ns cycle giving a 4-bit multiplication time of 12 ns.  相似文献   

10.
A self-controllable voltage level (SVL) circuit which can supply a maximum dc voltage to an active-load circuit on request or can decrease the dc voltage supplied to a load circuit in standby mode was developed. This SVL circuit can drastically reduce standby leakage power of CMOS logic circuits with minimal overheads in terms of chip area and speed. Furthermore, it can also be applied to memories and registers, because such circuits fitted with SVL circuits can retain data even in the standby mode. The standby power of an 8-bit 0.13-/spl mu/m CMOS ripple carry adder (RCA) with an on-chip SVL circuit is 8.2 nW, namely, 4.0% of that of an equivalent conventional adder, while the output signal delay is 786 ps, namely, only 2.3% longer than that of the equivalent conventional adder. Moreover, the standby power of a 512-bit memory cell array incorporating an SVL circuit for a 0.13-/spl mu/m 512-bit SRAM is 69.1 nW, which is 3.9% of that of an equivalent conventional memory-cell array. The read-access time of this 0.13-/spl mu/m SRAM is 285 ps, that is, only 2 ps slower than that of the equivalent SRAM.  相似文献   

11.
In this paper, we describe an energy-efficient carry-lookahead adder using reversible energy recovery logic (RERL), which is a new dual-rail reversible adiabatic logic. We also describe an eight-phase, clocked power generator that requires an off-chip inductor. For the energy-efficient design of reversible logic, we explain how to control the overhead of reversibility with a self-energy-recovery circuit. A test chip was implemented with a 0.8 μm CMOS technology, which included two 16-bit carry-lookahead adders to allow fair comparison: an RERL one and a static CMOS one. Experimental results showed that the RERL adder had substantial advantages in energy consumption over the static CMOS one at low operating frequencies. We also confirmed that we could minimize the energy consumption in the RERL circuit by reducing the operating frequency until adiabatic and leakage losses were equal  相似文献   

12.
从改变CM O S电路中能量转换模式的观点出发,研究CPL电路在采用交流能源后的低功耗特性。在此基础上提出了一种仅由nM O S构成的低功耗绝热电路——nM O S Com p lem en tary Pass-trans istor A d iabaticLog ic(nCPAL)。该电路利用nM O S管自举原理对负载进行全绝热驱动,从而减小了电路整体功耗和芯片面积。nCPAL能耗几乎与工作频率无关,对负载的敏感程度也较低。采用TSM C的0.25μm CM O S工艺,设计了一个8-b it超前进位加法器和功率时钟产生器。版图后仿真表明,在50~200 MH z频率范围内,nCPAL全加器的功耗仅为PAL-2N电路和2N-2N 2P电路的50%和35%。研究表明nCAPL适合于在VLS I设计中对功率要求较高的应用场合。  相似文献   

13.
In this paper we present two on-chip design-for-testability (DFT) schemes for CMOS ICs. One is for small circuits and the other for large circuits. Both schemes identify a faulty area on a chip with only a small area overhead for the additional circuitry and at most two extra pins. Moreover, if faults occur in different areas, multiple faults can also be detected with the proposed schemes. To demonstrate the ideas, DFT is incorporated in a 4-bit carry look ahead adder/subtractor (CLAAS) as well as a 16-bit arithmetic logic unit (ALU). Simulation results are given  相似文献   

14.
New high-speed BiCMOS current mode logic (BCML) circuits for fast carry propagation and generation are described. These circuits are suitable for reduced supply voltage of 3.3-V. A 32-b BiCMOS carry select adder (CSA) is designed using 0.5-μm BiCMOS technology. The BCML circuits are used for the correct carry path for high-speed operation while the rest of the adder is implemented in CMOS to achieve high density and low power dissipation. Simulation results show that the BiCMOS CSA outperforms emitter coupled logic (ECL) and CMOS adders  相似文献   

15.
The clocking schemes and signal waveforms of adiabatic circuits are different from those of standard CMOS circuits. This paper investigates the design approaches of low-power interface circuits in terms of energy dissipation. Several low-power interface circuits that convert signals between adiabatic logic and standard CMOS circuits are presented. All interface circuits and their layouts are implemented using TSMC 0.18 μm CMOS technology. The function verifications and energy loss tests for all interfaces are carried out using the net-list extracted from the layout. Full parasitic extraction is done. An adiabatic 8-bit carry look-ahead adder embedded in a static CMOS circuits is used to verify the proposed interfaces. The proposed interface circuits attain large energy savings over a wide range of frequencies, as compared with the previously reported circuits.  相似文献   

16.
A 4-bit, general-purpose, two's complement serial pipeline multiplier chip has been designed and fabricated in the bipolar GIMIC-O process. The chip can provide the following functions in 24-pin dual-in-line packages: (1) two's complement/two's complement 4-bit serial pipeline multiplier with programmable coefficients, (2) sign magnitude/two's complement 4-bit serial pipeline multiplier with programmable coefficients, (3) 5-bit dynamically programmable adder/subtractor, (4) 2/SUP -K/ scaler; (5) overflow corrector. Packages can be cascaded to provide functions of length greater than 4 bits. Nonsaturating circuit techniques, emitter function logic combined with current-steering trees, are effectively utilized to make high-performance, low-power circuits using a simple bipolar technology. The multiplier circuitry is compatible at inputs and outputs with standard emitter coupled logic and uses a standard -5.2/spl plusmn/10 percent power supply. Fully programmable multiplication at clock rates greater than 20 MHz is achieved with a power consumption of 37.5 mW/bit.  相似文献   

17.
提出一种基于现场可编程门阵列FPGA的实时基音周期估计系统。语音信号先通过模数转换器转换成无符号位的8-bit的语音数字信号,然后,对每一帧语音信号进行电平削波,并将削波后的语音信号转换为带符号位的2-bit的数字信号,再采用自相关函数方法估计语音信号的基音周期,对一帧带符号位的2-bit的数字信号做自相关运算能够转换为简单的加法运算,只要用简单的组合逻辑电路和计数器就能够实现。使用SpartanIIXC2S30芯片将实时的基音周期估计算法用芯片内的存储器、门电路和时序电路实现,达到实时基音周期估计的目的。  相似文献   

18.
A two-write-port, six-read-port, 32×64-bit register file has been designed for 2.5-V 0.5-μm CMOS technology, using primary self-resetting CMOS (SRCMOS) circuit techniques. The register cell are completely level-sensitive scan design test compatible. The fabricated register file occupies an area of 1.84×1.55 mm2, and the cell size is 21.6×30 μm2. The high-performance register file is implemented in a multiblock structure consisting of subarrays and associated multiplexing circuits. For a given read port, the outputs of all multiplexer circuits are dotted together to form a single global output. A quasi-global approach is used for reset pulse generation and timing control circuits to reduce area overhead. The output pulse width is controlled by a chopper circuit. The write-port operation is achieved by the combination of static data input and dynamic control circuits. The write-path circuits employ the advantages of the input isolation technique. Individual write-enable pulses applied to respective input ports of a multiport register-file cell are effective to establish a priority among those input ports. The present design provides an effective input isolation/decoupling circuit technique that allows the input pulse widths to vary over a wide range. This allows the write operation to be insensitive to control pulse widths, resulting in an effective input isolation scheme. Testing has shown all eight ports to be functional. The measured read access time was 1.1 ns, and read operation has been obtained at cycle times as short as 1.9 ns. The register file has been shown to be tolerant to a very wide range of input pulse widths yet delivers tightly controlled outputs  相似文献   

19.
The efficient implementation of adders in differential logic can be carried out using a new generate signal (N) presented in this paper. This signal enables iterative shared transistor structures to be built with a better speed/area performance than a conventional implementation. It also allows adders developed in domino logic to be easily adapted to differential logic. Based on this signal, three 32-b adders in differential cascode switch voltage (DCVS) logic with completion circuit for applications in self-timed circuits have been fabricated in a standard 1.0-μm two-level metal CMOS technology. The adders are: a ripple-carry (RC) adder, a carry look-ahead (CLA) adder, and a binary carry look-ahead (BCL) adder. The RC adder has the best levels of performance for random input data, but its delay is significantly influenced by the length of the carry propagation path, and thus is not recommended in circuits with nonrandom input operands. The BCL adder is the fastest but has a high cost in chip area. The CLA adder provides an intermediate option, with an area which is 20% greater than that of the RC adder. Its average delay is slightly greater than that of the other two adders, with an addition time which increases slowly with the carry propagate length even for adders with a high number of bits  相似文献   

20.
A 64-bit parallel correlator is described using a large-scale integrated single-chip bipolar transistor construction. The circuit operates at 20 MHz and has an analog correlation output. The LSI structure uses the triple diffusion process, which produces both n-p-n and p-n-p transistors. Resistors are also diffused. A combination of soft saturated register circuits and nonsaturating gating circuits produce a 25-pJ gate performance with device f/SUB t/ in the range 50-150 MHz. The logic form used is emitter-follower logic. This 5000 device, 220- by 230-mil chip, is a highly producible LSI function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号