首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Homeobox A10 (HOXA10), a member of abdominal B subclass of homeobox genes, is responsible for uterine homeosis during development. Intriguingly, in the adult murine uterus, HOXA10 has been demonstrated to play important roles in receptivity, embryo implantation, and decidualization. However, the roles of HOXA10 in the primate endometrium are not known. To gain insights into the roles of HOXA10 in the primate endometrium, its expression was studied in the endometria of bonnet monkey (Macaca radiata) in the receptive phase and also in the endometria of monkeys treated with antiprogestin onapristone (ZK98.299) or in conception cycle where the presence of preimplantation stage blastocyst was verified. In addition, the mRNA expression of HOXA11 and insulin-like growth factor-binding protein 1 (IGFBP1) was evaluated by real-time PCR in these animals.The results revealed that HOXA10 in the luteal phase primate endometrium is differentially expressed in the functionalis and the basalis zones, which is modulated in vivo by progesterone and also by the signals from the incoming embryo suggesting the involvement of HOXA10 in the process of establishment of pregnancy in primates. In addition, the results also demonstrated that the expression of IGFBP1 but not HOXA11 is coregulated with HOXA10 in the endometria of these animals. The pattern of changes in the expression of HOXA10 in response to the two stimuli suggests that endometrial receptivity and implantation not only requires a synchrony of maternal and embryonic signaling on endometrial cells in the primates but there also exists a controlled differential response among the cells of various uterine compartments.  相似文献   

2.
Cytokines and growth factors are important mediators of progesterone-regulated endometrial receptivity and embryo development. Early luteal phase administration of a potent antiprogestin-like mifepristone to the rhesus monkey results in endometrial desynchrony, loss of embryo viability and implantation failure. In the present study, administration of mifepristone (2 mg/kg body weight, s.c.) on day 2 after ovulation resulted in a significant increase (P < 0.01) in the level of tumor necrosis factor alpha (TNFalpha) in glandular and vascular compartments of endometrium, and in endometrial secretion and luminal fluid on day 6 after ovulation in the rhesus monkey. There was an associated lag in embryonic development, characterized by delayed mitochondrial maturity, poorly developed junctional complexes, a relative absence of intra-cytoplasmic filaments and a high degree of intra-cellular degenerative features. Exposure of TNFalpha (0, 0.5, 5, 50 ng/ml) to preimplantation stage mouse embryos in vitro showed a dose-dependent arrest in growth and development at both morula and blastocyst stages along with ultra-structural features of degeneration similar to those observed in embryos collected from early luteal phase mifepristone-treated monkeys. The de novo synthesized and released proteins in terms of trichloroacetic acid precipitable 35S by morulae and blastocysts in vitro showed a marked depression following exposure to TNFalpha compared with control embryos. Based on the above observation and the fact that preimplantation stage embryos express receptors for TNFalpha, we suggest that increased levels of TNFalpha in endometrial and luminal compartments around the time of uterine receptivity following early luteal phase administration of mifepristone adversely affect the growth and viability of preimplantation stage embryos.  相似文献   

3.
Splicing factor SC35 is an essential component of the spliceosome, the cellular apparatus that removes introns from pre-mRNA to provide alternatively spliced isoforms. Many proteins associated with development of uterine receptivity and embryo implantation are present as isoforms, the tissue-specific expression of which may be regulated through alternative splicing. SC35 was identified as being increased at implantation sites during early pregnancy in mice. However, the present study has demonstrated that SC35 is present in human and rhesus monkey endometrium, that the protein is increased during the secretory phase of the oestrous cycle compared with the proliferative phase in both these primates and that it is present in a distinct pattern within the nucleus of both epithelial and stromal cells, as well as in cells of the vasculature. Both the intensity of immunoreactive protein and the proportion of cells that stain for SC35 alter with the phase of the oestrous cycle. A very precise expression pattern of SC35 (both protein and mRNA) was seen during early placentation in rhesus monkeys. At implantation sites between day 24 and day 35 of early pregnancy, SC35 was expressed strongly in cytotrophoblasts within the trophoblastic shell, in syncytiotrophoblast at the periphery of the cell column and in both cytotrophoblast and syncytiotrophoblast in the floating villi. In the adjacent maternal decidua, expression of SC35 was weak. These results indicate a role for SC35 in preparation of a receptive uterus, in the provision of secreted proteins to support blastocyst development and in trophoblast invasion.  相似文献   

4.
Successful blastocyst implantation depends on the interaction between cells of maternal endometrium and conceptus, as well as adequate blood supply to the site of blastocyst implantation. Nitric oxide (NO) generally plays a significant role in the local regulation of vascular physiology in a variety of mammalian tissue systems, however, its role in blastocyst implantation and placentation in the primate is not known. The aim of the present study was to examine: (i) NADH-diaphorase activity and expression of three isoforms of nitric oxide synthase (NOS), namely endothelial NOS (eNOS), inducible NOS (iNOS) and neuronal NOS (nNOS) in pre-implantation stage monkey embryos, morula (n = 4) and blastocyst (n = 10), as well as, in different compartments of conceptus and maternal endometrium at primary implantation sites during lacunar (n = 6) and villous (n = 9) stages of placentation in the rhesus monkey, and (ii) the potential anti-nidatory effect of vaginal administration of NOS inhibitor during the peri-implantation period of conception cycles in rhesus monkeys. Pre-implantation stage blastocysts exhibited marked NADPH-diaphorase activity along with immunopositive iNOS mainly in the inner cell mass. During the lacunar stage, marked eNOS expression was observed in cytotrophoblast cells lining the embryonic cavity. However, cytotrophoblast cells lining villi, forming columns, and constituting anchoring villi expressed all the three isoforms of NOS in villous placenta stage tissue. During the lacunar stage, eNOS and iNOS protein expressions were observed in epithelial and decidual cells of endometrium. As gestation advanced, mRNAs for all three isoforms of NOS were observed to increase in epithelial and decidual cells, however, with no marked change in protein expression. Vaginal administration of a NOS inhibitor (N(G)-nitro-l-arginine methyl ester, L-NAME, 4, 6, and 8 mg/kg body weight or aminoguanidine, AG, 4 mg/kg body weight) during days 6 to 12 after ovulation resulted in pregnancy failure in a higher number of animals (L-NAME: 8 confirmed pregnancies in 25 animals; AG: 2 confirmed pregnancies in 8 animals) compared with control animals (5 pregnancies in 7 animals). It appears that NO may play an important role in the establishment of pregnancy in the rhesus monkey.  相似文献   

5.
6.
7.
Maternal endometrial vascular endothelial growth factor (VEGF) is considered important in blastocyst implantation. However, there is no direct evidence to support this conjecture in the primate. In the present study, we have examined this hypothesis by testing whether immunoneutralization of VEGF during the peri-implantation stage of gestation affects embryo implantation in the rhesus monkey. Adult female animals (n = 36) during mated ovulatory cycles were randomly assigned to one of the experimental groups treated subcutaneously with either isotype-matched mouse immunoglobulin (group 1: control, n = 8) or monoclonal mouse antibody against VEGF-A (anti-VEGF Mab; group 2: 10 mg on day 5 after ovulation, n = 8; group 3: 20 mg on day 5 after ovulation, n = 8; group 4: 10 mg on day 10 after ovulation, n = 4; group 5: 10 mg on days 5 and 10 after ovulation, n = 8). Anti-VEGF Mab-treated animals in groups 2-4 did not show any marked inhibition in pregnancy establishment. On pooled analysis, however, anti-VEGF Mab administration in groups 2-5 (n = 28) resulted in a significant (P < 0.04) decline in the number of viable term pregnancy when compared with control animals. The observed difference was explained by the fact that 10 mg anti-VEGF Mab given to each animal on days 5 and 10 after ovulation in group 5 (n = 8) inhibited pregnancy establishment significantly (P < 0.02) when compared with control group 1. There was no significant change in serum concentrations of estradiol-17beta, progesterone, and free VEGF among groups. Furthermore, animals treated with anti-VEGF Mab (n = 8) as in group 5 revealed marked decrease in immunoreactive VEGF, fms-like tyrosine kinase-1, and kinase-insert domain region in trophoblast cells associated with shallow uterine invasion on day 13 of gestation when compared with samples from control group animals (n = 8). Thus, VEGF action is required for successful blastocyst implantation in the rhesus monkey.  相似文献   

8.
9.
Oestrogen, progesterone and paracrine signals from the embryo have been associated with the overall control of implantation. Changes in the expression of the heavily glycosylated transmembrane glycoprotein MUC1 mucin on the endometrial epithelium are also thought to be important for embryo attachment. Increased MUC1 expression has been correlated with elevated progesterone levels in the secretory phase of the menstrual cycle. Embryonic control of endometrial receptivity through changes in MUC1 expression could be achieved through the interleukin-1 system. Four endometrial epithelial cell lines (HEC1A, HEC1B, Ishikawa and RL592) were treated with oestrogen and progesterone (with or without interleukin-1-beta) and were subjected to immunocytochemistry and flow cytometric analysis to determine MUC1 production using MUC1 antibodies. HEC1A (oestrogen receptor (ER) and progesterone receptor (PR) positive) and HEC1B (ER positive and PR negative) were transfected with the MUC1 promoter, underwent similar treatment regimes and the activity of the MUC1 promoter relative to their untreated controls was determined using a chloramphenicol acetyltransferase (CAT) enzyme-linked immunoassay. Using the cell lines, we determined that endometrial MUC1 expression is up-regulated by progesterone, consistent with the in vivo increases in MUC1 related to high progesterone levels. We also revealed that neither oestrogen, nor interleukin-1-beta, appear to modulate MUC1. Progesterone-dependent regulation of MUC1 is likely to be an important factor in determining endometrial receptivity.  相似文献   

10.
Implantation mechanisms: insights from the sheep   总被引:7,自引:0,他引:7  
Implantation in all mammals involves shedding of the zona pellucida, followed by orientation, apposition, attachment and adhesion of the blastocyst to the endometrium. Endometrial invasion does not occur in domestic ruminants; thus, definitive implantation is achieved by adhesion of the mononuclear trophoblast cells to the endometrial lumenal epithelium (LE) and formation of syncytia by the fusion of trophoblast binucleate cells with the LE. This review highlights new information on mechanisms regulating the implantation cascade in sheep. The embryo enters the uterus on day 4 at the morula stage of development and then develops into a blastocyst by day 6. The blastocyst sheds the zona pellucida (day 8), elongates to a filamentous form (days 11-16), and adheres to the endometrial LE (day 16). Between days 14 and 16, the binucleate cells begin to differentiate in the trophoblast and subsequently migrate and fuse with the endometrial LE to form syncytia. Continuous exposure of the endometrium to progesterone in early pregnancy downregulates the progesterone receptors in the epithelia, a process which is associated with loss of the cell-surface mucin MUC1 and induction of several secreted adhesion proteins. Recurrent early pregnancy loss in the uterine gland knockout ewe model indicates that secretions of the endometrial epithelia have a physiologic role in blastocyst elongation and implantation. A number of endometrial proteins have been identified as potential regulators of blastocyst development and implantation in sheep, including glycosylated cell adhesion molecule 1 (GlyCAM-1), galectin-15, integrins and osteopontin. The epithelial derived secreted adhesion proteins (GlyCAM-1, galectin-15 and osteopontin) are expressed in a dynamic temporal and spatial manner and regulated by progesterone and/or interferon tau, which is the pregnancy recognition signal produced by the trophoblast during blastocyst elongation. The noninvasive and protracted nature of implantation in domestic animals provides valuable opportunities to investigate fundamental processes of implantation that are shared among all mammals. Understanding of the cellular and molecular signals that regulate uterine receptivity and implantation can be used to diagnose and identify causes of recurrent pregnancy loss and to improve pregnancy outcome in domestic animals and humans.  相似文献   

11.
12.
Facilitative glucose transport molecules (glucose transporters, GLUTs) are responsible for glucose transport across cellular membranes. Of the 14 family members, expression of nine has been reported in the murine uterus and seven in the human uterus. Some studies reveal that adequate glucose uptake and metabolism are essential for the proper differentiation of the uterine endometrium toward a receptive state capable of supporting embryo implantation. However, the mechanistic role of GLUTs in endometrial function remains poorly understood. This review aims to present the current knowledge about GLUT expression in the uterus and distribution among the different cell types within the endometrium. In addition, it analyzes the available data in the context of roles GLUTs may play in normal uterine physiology as well as the pathological conditions of infertility, endometrial cancer, and polycystic ovarian syndrome.  相似文献   

13.
14.
In pigs, uterine exposure to the constituents of semen is known to increase litter size but the underlying physiological mechanisms remain undefined. Studies in rodents and humans implicate immune modulating moieties in seminal plasma as likely candidates, acting through enhancing the receptivity of the female tract. In this study, the acute and longer term effects of seminal plasma on cytokine expression and leukocyte abundance in the pig endometrium during early pregnancy have been characterised. The reproductive tracts of gonadotrophin-primed pre-pubertal gilts treated with intrauterine infusions of either pooled seminal plasma or phosphate-buffered saline (PBS) were retrieved at 34 h, or on day 5 and day 9 after treatment. Seminal plasma elicited an endometrial inflammatory infiltrate comprised of predominantly macrophages and major histocompatibility complex class II+-activated macrophages and dendritic cells. The abundance of these cells was greatest at the pre-ovulatory (34 h) time-point and their increase relative to PBS-treated tissues was maintained until day 9 after seminal plasma treatment. Seminal plasma induced the expression of the cytokines, granulocyte macrophage colony-stimulating factor, interleukin-6 and monocyte chemoattractant protein-1, and the eicosanoid-synthesising enzyme cyclo-oxygenase-2. Expression was maximal 34 h after treatment but altered expression patterns as a consequence of seminal plasma induction persisted through early pregnancy. These changes were accompanied by altered dynamics in pre-implantation embryo development with an increase in the number of embryos and in their viability after seminal plasma treatment. Together, these findings implicate factors in seminal plasma in programming the trajectory of uterine cytokine expression and leukocyte trafficking during early pregnancy and in regulating pre-implantation embryo development in the pig.  相似文献   

15.
Blastocyst implantation occurs in the progesterone-primed uterus of hamsters, but not in mice where the progesterone-primed uterus requires estrogen influence. Leukemia inhibitory factor (Lif), an estrogen-regulated gene in mice, is an absolutely needed cytokine for uterine receptivity and implantation in this species. This study aimed to evaluate the importance of Lif ligand-receptor signaling during uterine receptivity and implantation in hamsters. We investigated whether or not the uterine expression patterns of Lif and its receptors, Lif-r and gp130, during the periimplantation period of pregnancy and its hormonal regulation in the ovariectomized hamster correlate with some of the vital phases of uterine changes during early pregnancy. Uterine Lif, Lif-r, and gp130 mRNA expressions were examined by Northern and in situ hybridization. During the uterine preparatory phase for implantation, Lif, Lif-r, and gp130 were expressed either in the gland, luminal epithelium or both. As the implantation process began, Lif expression was minimal, but Lif-r and gp130 extended to the decidual areas. This decidual expression of Lif-r and gp130 was not dependent on the presence of the embryo since these genes were expressed in the suture-induced deciduomata. We also observed that, while the uterine Lif was induced by estrogen, Lif-r and gp130 were induced by progesterone in ovariectomized hamsters. Additionally, we show that a Lif antibody when instilled intraluminally on day 3 of pregnancy reduced the number of implantation sites. Taken together, these data suggest that Lif signaling is important for uterine receptivity and implantation in hamsters.  相似文献   

16.
Cyclooxygenase (COX), a rate-limiting enzyme that produces prostaglandins (PGs) from arachidonic acid, exists in two isoforms, COX-1 and COX-2. PGE2 synthase (PGES) is a terminal prostanoid synthase and can enzymatically convert the cyclooxygenase product PGH2 to PGE2, including two isoforms: microsomal PGES (mPGES) and cytosolic PGES (cPGES). cPGES is predominantly linked with COX-1 to promote the immediate response. mPGES is preferentially coupled with the inducible COX-2 to promote delayed PGE2 generation. COX-2-deficient female mice are infertile with abnormalities in ovulation, fertilization, implantation and decidualization. The aim of this study was to examine immunohistochemically the expression pattern of COX-1, COX-2, mPGES and cPGES proteins in the endometrium of the rhesus monkey during the menstrual cycle. COX-1 immunostaining was mainly localized in the luminal epithelium and glandular epithelium near the lumen, and detected in all the stages during the menstrual cycle. COX-2 immunostaining was mainly localized in the luminal and glandular epithelium, and strongly shown during the mid-luteal phase (days 16 and 20) of the menstrual cycle. There was a strong cPGES immunostaining in the luminal and glandular epithelium on days 12, 16, 20 and 25 of the menstrual cycle. mPGES immunostaining was strongly detected in the glandular epithelium on days 20 and 25 of the menstrual cycle. These data suggest that the coupling of cPGES and COX-1 in the luminal epithelium may be responsible for the synthesis of PGE2 in monkey endometrium, and the coupling of mPGES and COX-2 in the glandular epithelium may be of importance for preparing the receptive endometrium.  相似文献   

17.
Successful establishment of pregnancy is dependent on uterine receptivity at the time of trophoblast invasion and implantation. The endometrium undergoes morphological and functional differentiation during the mid- to late secretory phase of the menstrual cycle in preparation for such an event. These changes are orchestrated by ovarian steroid hormones. However, local autocrine-paracrine signalling at the deciduo-placental interface is crucial for successful establishment of pregnancy. One key cytokine that may regulate many functions in implantation is prolactin. Prolactin is secreted by the decidualized endometrium at the time of predicted conception and, in the event of pregnancy, local expression and secretion of prolactin persists until term. Prolactin mediates its effect on target cells through interaction with single-pass transmembrane receptors. Localization of the sites of expression of the prolactin receptor indicates that the cytokine may regulate an array of functions in the pregnant uterus that are crucial in im-plantation and early pregnancy.  相似文献   

18.
TGF-beta superfamily expression and actions in the endometrium and placenta   总被引:7,自引:0,他引:7  
Transforming growth factor beta (TGFbeta) superfamily members are closely associated with tissue remodelling events and reproductive processes. This review summarises the current state of knowledge regarding the expression and actions of TGFbeta superfamily members in the uterus, during the menstrual cycle and establishment of pregnancy. TGFbetas and activin beta subunits are abundantly expressed in the endometrium, where roles in preparation events for implantation have been delineated, particularly in promoting decidualisation of endometrial stroma. These growth factors are also expressed by epithelial glands and secreted into uterine fluid, where interactions with preimplantation embryos are anticipated. Knockout models and embryo culture experiments implicate activins, TGFbetas, nodal and bone morphogenetic proteins (BMPs) in promoting pre- and post-implantation embryo development. TGFbeta superfamily members may therefore be important in the maternal support of embryo development. Following implantation, invasion of the decidua by fetal trophoblasts is tightly modulated. Activin promotes, whilst TGFbeta and macrophage inhibitory cytokine-1 (MIC-1) inhibit, trophoblast migration in vitro, suggesting the relative balance of TGFbeta superfamily members participate in modulating the extent of decidual invasion. Activins and TGFbetas have similar opposing actions in regulating placental hormone production. Inhibins and activins are produced by the placenta throughout pregnancy, and have explored as a potential markers in maternal serum for pregnancy and placental pathologies, including miscarriage, Down's syndrome and pre-eclampsia. Finally, additional roles in immunomodulation at the materno-fetal interface, and in endometrial inflammatory events associated with menstruation and repair, are discussed.  相似文献   

19.
Androgen receptor (AR) is reported to be expressed in human uterine endometrium, but not much information is available on the role of androgens in human endometrium. The purpose of this study is to investigate the role of androgens in the regulation of matrix metalloproteinase (MMP)-1, which is one of the important MMPs for menstruation and embryo implantation in human endometrium. Human endometrial stromal cells (HESCs) were obtained from human endometrium by enzymatic dissociation method. Purified HESCs were incubated with 17beta-estradiol (E2), testosterone, or E2 + testosterone. Progestins (natural progesterone or medroxyprogesterone acetate) or vehicle (dimethyl sulfoxide) were also added to the media instead of testosterone. Furthermore, hydroxyflutamide (FLU),a specific AR antagonist, was also supplemented to cultured media. The amounts of MMP-1 in cultured media and in HESC lysates were examined by ELISA measurements and western blotting analysis respectively. The expression of ARmRNA in HESCs RNA was analyzed by RT-PCR. Testosterone significantly inhibited MMP-1 in both cultured media and cell lysates in a dose-dependent manner. Progestins also inhibited MMP-1. Furthermore, FLU completely recovered the decrease of MMP-1 induced by testosterone. ARmRNA was detected in all HESCs RNA. The present study demonstrated that the secretion and production of MMP-1 in HESCs in vitro were inhibited by testosterone through androgen receptors in a manner similar to that seen for progesterone. These findings indicate that androgen may play an important role in morphological and functional changes of human endometrium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号