共查询到20条相似文献,搜索用时 0 毫秒
1.
The thrombin-binding DNA aptamer was used for affinity capture of thrombin in MALDI-TOF-MS. The aptamer was covalently attached to the surface of a glass slide that served as the MALDI surface. Results show that thrombin is retained at the aptamer-modified surface while nonspecific proteins, such as albumin, are removed by rinsing with buffer. Upon application of the low-pH MALDI matrix, the G-quartet structure of the aptamer unfolds, releasing the captured thrombin. Following TOF-MS analysis, residual matrix and protein can be washed from the surface, and buffer can be applied to refold the aptamers, allowing the surface to be reused. Selective capture of thrombin from mixtures of thrombin and albumin and of thrombin and prothrombin from human plasma was demonstrated. This simple approach to affinity capture, isolation, and detection holds potential for analysis, sensing, purification, and preconcentration of proteins in biological fluids. 相似文献
2.
A novel ionization source for biological mass spectrometry is described that combines atmospheric pressure (AP) ionization and matrix-assisted laser desorption/ionization (MALDI). The transfer of the ions from the atmospheric pressure ionization region to the high vacuum is pneumatically assisted (PA) by a stream of nitrogen, hence the acronym PA-AP MALDI. PA-AP MALDI is readily interchangeable with electrospray ionization on an orthogonal acceleration time-of-flight (oaTOF) mass spectrometer. Sample preparation is identical to that for conventional vacuum MALDI and uses the same matrix compounds, such as alpha-cyano-4-hydroxycinnamic acid. The performance of this ion source on the oaTOF mass spectrometer is compared with that of conventional vacuum MALDI-TOF for the analysis of peptides. PA-AP MALDI can detect low femtomole amounts of peptides in mixtures with good signal-to-noise ratio and with less discrimination for the detection of individual peptides in a protein digest. Peptide ions produced by this method generally exhibit no metastable fragmentation, whereas an oligosaccharide ionized by PA-AP MALDI shows several structurally diagnostic fragment ions. Total sample consumption is higher for PA-AP MALDI than for vacuum MALDI, as the transfer of ions into the vacuum system is relatively inefficient. This ionization method is able to produce protonated molecular ions for small proteins such as insulin, but these tend to form clusters with the matrix material. Limitations of the oaTOF mass spectrometer for singly charged high-mass ions make it difficult to evaluate the ionization of larger proteins. 相似文献
3.
4.
A nonmetallic sample support for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry enhances the positive ion yield by 2 orders of magnitude and generally affects the charge balance in the desorption plume. We interpret the effects of the target material and of the sample preparation on MALDI mass spectra as a result of photoelectrons emitted upon laser irradiation of a metal target covered by a thin sample layer. These electrons are shown to play an important role in MALDI and laser desorption/ionization because they decrease the yield of positive ions, reduce ions with higher oxidation states, and affect the ion velocity distribution as well as the mass resolution. Understanding the role of these photoelectrons helps to clarify previously obscure aspects of the ion formation mechanism in MALDI. 相似文献
5.
Silicon nanopowder (5-50 nm) was applied as a matrix for the analysis of small molecules in laser desorption/ionization mass spectrometry. In contrast with conventional matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry, the matrix background interference in the low mass range was significantly reduced. Effects of the particle size and sample preparation procedures on the background mass spectra and the analyte signal intensity have been investigated, and an optimized powder and sample preparation protocol was established. Several surface characterization tools have been applied as well. Both positive mode and negative mode laser desorption/ionization have been applied to different analytes including drugs, peptides, pesticides, acids, and others. Detection limits down to the low femtomole per microliter levels were achieved for propafenone and verapamil drugs. The method developed was found relatively tolerant to salt contamination, which allowed the direct analysis of morphine and propaphenone in untreated urine and triazine herbicides in a soil extract. The new silicon-nanoparticle-assisted laser desorption ionization method was found to be highly selective, which may be due to analyte-dependent precharging in solution, prior to vacuum laser desorption. Some aspects of the charge-transfer mechanism have been studied and discussed. In comparison with standard MALDI matrixes, the silicon nanopowder requires much lower laser fluence (contributing to a reduced background) has much better surface homogeneity, and is more tolerant to salt interference, which makes it an easily applicable practical tool at a potentially low cost. 相似文献
6.
Application of mass spectrometry imaging (MS imaging) analysis to single cells was so far restricted either by spatial resolution in the case of matrix-assisted laser desorption/ionization (MALDI) or by mass resolution/mass range in the case of secondary ion mass spectrometry (SIMS). In this study we demonstrate for the first time the combination of high spatial resolution (7 μm pixel), high mass accuracy (<3 ppm rms), and high mass resolution (R = 100?000 at m/z = 200) in the same MS imaging measurement of single cells. HeLa cells were grown directly on indium tin oxide (ITO) coated glass slides. A dedicated sample preparation protocol was developed including fixation with glutaraldehyde and matrix coating with a pneumatic spraying device. Mass spectrometry imaging measurements with 7 μm pixel size were performed with a high resolution atmospheric-pressure matrix-assisted laser desorption/ionization (AP-MALDI) imaging source attached to an Exactive Orbitrap mass spectrometer. Selected ion images were generated with a bin width of Δm/z = ±0.005. Selected ion images and optical fluorescence images of HeLa cells showed excellent correlation. Examples demonstrate that a lower mass resolution and a lower spatial resolution would result in a significant loss of information. High mass accuracy measurements of better than 3 ppm (root-mean-square) under imaging conditions provide confident identification of imaged compounds. Numerous compounds including small metabolites such as adenine, guanine, and cholesterol as well as different lipid classes such as phosphatidylcholine, sphingomyelin, diglycerides, and triglycerides were detected and identified based on a mass spectrum acquired from an individual spot of 7 μm in diameter. These measurements provide molecularly specific images of larger metabolites (phospholipids) in native single cells. The developed method can be used for a wide range of detailed investigations of metabolic changes in single cells. 相似文献
7.
Microprobe laser desorption/laser ionization mass spectrometry (microL(2)MS) is a sensitive and selective technique that has proven useful in the qualitative and semiquantitative detection of trace organic compounds, particularly polycyclic aromatic hydrocarbons (PAHs). Recent efforts have focused on developing microL(2)MS as a quantitative method, often by measuring the ratio of signal strength of an analyte to an internal standard. Here, we present evidence of factors that affect these ratios and thus create uncertainty and irreproducibility in quantification. The power and wavelength of the desorption laser, the delay time between the desorption and ionization steps, the power of the ionization laser, and the ionization laser alignment are all shown to change PAH ratios, in some cases by up to a factor of 24. Although changes in the desorption laser parameters and the delay time cause the largest effects, the ionization laser power and alignment are the most difficult parameters to control and thus provide the most practical limitations for quantitative microL(2)MS. Variation in ratios is seen in both synthetic poly(vinyl chloride) membranes and in "real-life" samples of Murchison meteorite powder. Ratios between similar PAHs vary less than those between PAHs that differ greatly in mass and structure. This finding indicates that multiple internal standards may be needed for quantification of samples containing diverse PAHs. 相似文献
8.
A combination of liquid matrix and graphite particulates (2 μm) has been proposed as a method suitable for the laser desorption/ionization mass spectrometry of peptides and proteins (Sunner, J.; et al. Anal. Chem. 1995, 67, 4335). Here we demonstrate the potential of this approach as a straightforward, and very general, method of achieving the ultraviolet laser desorption/ionization of a broad range of intermediate weight analytes. The desorption/ionization mechanism, the influence of preparative procedures, and the breadth of application of this methodology have been investigated. A simple and robust preparative procedure is presented for the analysis of proteins, oligosaccharides, and synthetic polymers. Detection sensitivities are in the femtomole region for lower molecular weight peptides and oligosaccharides. The graphite acts as an energy transfer medium by absorbing the UV radiation, leading to thermal desorption of the liquid matrix and analyte. The liquid matrix was observed to fulfill several important roles. In the case of peptides and proteins, which preferentially form protonated molecular ions, it acts as a protonating agent. It also enhances the signal intensities of cationized species (e.g., polysaccharides and polar polymers) by assisting their desorption. An excess of liquid matrix serves to cool the analyte during the desorption step and minimize decomposition. The presence of liquid matrices increases the sample lifetime at a particular desorption spot, minimizing the time-consuming search for "hot spots". The addition of cationizing salts has been shown to improve the quality of mass spectra obtained for polar polymers and extend the range of materials that can be investigated to include apolar synthetic polymers. 相似文献
9.
Obena RP Lin PC Lu YW Li IC del Mundo F Arco Sd Nuesca GM Lin CC Chen YJ 《Analytical chemistry》2011,83(24):9337-9343
The significance and epidemiological effects of metals to life necessitate the development of direct, efficient, and rapid method of analysis. Taking advantage of its simple, fast, and high-throughput features, we present a novel approach to metal ion detection by matrix-functionalized magnetic nanoparticle (matrix@MNP)-assisted MALDI-MS. Utilizing 21 biologically and environmentally relevant metal ion solutions, the performance of core and matrix@MNP against conventional matrixes in MALDI-MS and laser desorption ionization (LDI) MS were systemically tested to evaluate the versatility of matrix@MNP as ionization element. The matrix@MNPs provided 20- to >100-fold enhancement on detection sensitivity of metal ions and unambiguous identification through characteristic isotope patterns and accurate mass (<5 ppm), which may be attributed to its multifunctional role as metal chelator, preconcentrator, absorber, and reservoir of energy. Together with the comparison on the ionization behaviors of various metals having different ionization potentials (IP), we formulated a metal ionization mechanism model, alluding to the role of exciton pooling in matrix@MNP-assisted MALDI-MS. Moreover, the detection of Cu in spiked tap water demonstrated the practicability of this new approach as an efficient and direct alternative tool for fast, sensitive, and accurate determination of trace metal ions in real samples. 相似文献
10.
AbstractWe prepared and characterized manganese oxide magnetic nanoparticles (d =5.6 nm) and developed nanoparticle-assited laser desorption/ionization (nano-PALDI) mass spectrometry. The nanoparticles had MnO2 and Mn2O3 cores conjugated with hydroxyl and amino groups, and showed paramagnetism at room temperature. The nanoparticles worked as an ionization assisting reagent in mass spectroscopy. The mass spectra showed no background in the low m/z. The nanoparticles could ionize samples of peptide, drug and proteins (approx. 5000 Da) without using matrix, i.e., 2,5-dihydroxybenzoic acid (DHB), 4-hydroxy-α-cinnamic acid (CHCA) and liquid matrix, as conventional ionization assisting reagents. Post source decay spectra by nano-PALDI mass spectrometry will yield information of the chemical structure of analytes. 相似文献
11.
Polyethylene is one of the most important industrial polymers and is also one of the most challenging polymers to be characterized by mass spectrometry. We have developed a substrate-assisted laser desorption/ionization (LDI) mass spectrometric method for polyethylene analysis. In this method, cobalt, copper, nickel, or iron metal powders are used as a sample substrate and silver nitrate is used as the cationization reagent. Using a conventional UV LDI time-of-flight mass spectrometer, intact oligomer ions having masses up to 5000 u can be detected. Cobalt is found to produce spectra with the highest signal-to-noise ratio and the lowest level of fragmentation. Cobalt powder size is shown to have some effect on the spectra produced. The best results are obtained with the use of cobalt powders with diameters ranging from 30 to 100 microm. Fragmentation cannot be totally eliminated, but the fragment ion peaks can be readily discerned from the intact polyethylene ions in the substrate-assisted LDI spectrum. Thus, the average molecular masses of low-mass polyethylene samples can be determined by using this method. A rapid heating model is used to account for the effectiveness of using the coarse metal powders to assist the analysis of intact polyethylene molecules by LDI. 相似文献
12.
Ionic liquids as matrixes for matrix-assisted laser desorption/ionization mass spectrometry 总被引:5,自引:0,他引:5
Room-temperature ionic liquids are useful as solvents for organic synthesis, electrochemical studies, and separations. We wished to examine whether their high solubalizing power, negligible vapor pressure, and broad liquid temperature range are advantageous if they are used as matrixes for UV-MALDI. Several different ionic matrixes were synthesized and tested, using peptides, proteins, and poly(ethylene glycol) (PEG-2000). All ionic liquids tested have excellent solubilizing properties and vacuum stability compared to other commonly used liquid and solid matrixes. However, they varied widely in their ability to produce analyte gas-phase ions. Certain ionic matrixes, however, produce homogeneous solutions of greater vacuum stability, higher ion peak intensity, and equivalent or lower detection limits than currently used solid matrixes. Clearly, ionic liquids and their more amorphous solid analogues merit further investigation as MALDI matrixes. 相似文献
13.
N I Taranenko N T Potter S L Allman V V Golovlev C H Chen 《Analytical chemistry》1999,71(18):3974-3976
A rapid, simple, and reliable gender determination of human DNA samples was successfully obtained using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Detection sensitivity reached 0.01 ng or less for DNA samples. 相似文献
14.
Perfluorinated surfactants are demonstrated to dramatically enhance desorption/ionization on fluorinated silicon (DIOS) mass spectrometry. Perfluorooctanesulfonic acid improved the signal-to-noise ratio of tryptic digests and gave a 3-fold increase in the number of peptides identified. Similar results were also obtained using perfluoroundecanoic acid; yet among the seven different surfactants tested, controls such as nonfluorinated sodium dodecyl sulfate or fluorinated molecules with minimal surfactant activity did not enhance the signal. The same surfactants also enhanced the DIOS-MS signal of amino acids, carbohydrates, and other small organic compounds. The signal enhancement may be facilitated by the high surface activity of the perfluorinated surfactants on the fluorinated silicon surfaces allowing for a higher concentration of analyte to be absorbed. 相似文献
15.
Shen Z Thomas JJ Averbuj C Broo KM Engelhard M Crowell JE Finn MG Siuzdak G 《Analytical chemistry》2001,73(3):612-619
Desorption/ionization on porous silicon mass spectrometry (DIOS-MS) is a novel method for generating and analyzing gas-phase ions that employs direct laser vaporization. The structure and physicochemical properties of the porous silicon surfaces are crucial to DIOS-MS performance and are controlled by the selection of silicon and the electrochemical etching conditions. Porous silicon generation and DIOS signals were examined as a function of silicon crystal orientation, resistivity, etching solution, etching current density, etching time, and irradiation. Pre-and postetching conditions were also examined for their effect on DIOS signal as were chemical modifications to examine stability with respect to surface oxidation. Pore size and other physical characteristics were examined by scanning electron microscopy and Fourier transform infrared spectroscopy, and correlated with DIOS-MS signal. Porous silicon surfaces optimized for DIOS response were examined for their applicability to quantitative analysis, organic reaction monitoring, post-source decay mass spectrometry, and chromatography. 相似文献
16.
Analysis of microbial mixtures by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 总被引:1,自引:0,他引:1
Wahl KL Wunschel SC Jarman KH Valentine NB Petersen CE Kingsley MT Zartolas KA Saenz AJ 《Analytical chemistry》2002,74(24):6191-6199
Many different laboratories are currently developing mass-spectrometric techniques to analyze and identify microorganisms. However, minimal work has been done with mixtures of bacteria. To demonstrate that microbial mixtures could be analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), mixed bacterial cultures were analyzed in a double-blind fashion. Nine different bacterial species currently in our MALDI-MS fingerprint library were used to generate 50 different simulated mixed bacterial cultures similar to that done for an initial blind study previously reported (Jarman, K. H.; Cebula, S. T.; Saenz, A. J.; Petersen, C. E.; Valentine, N. B.; Kingsley, M. T.; Wahl, K. L. Anal. Chem. 2000, 72, 1217-1223). The samples were analyzed by MALDI-MS with automated data extraction and analysis algorithms developed in our laboratory. The components present in the sample were identified correctly to the species level in all but one of the samples. However, correctly eliminating closely related organisms was challenging for the current algorithms, especially in differentiating Serratia marcescens, Escherichia coli, and Yersinia enterocolitica, which have some similarities in their MALDI-MS fingerprints. Efforts to improve the specificity of the algorithms are in progress. 相似文献
17.
The formation and decomposition (postsource decay, PSD) of anionic adducts in negative ion matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry have been studied. Chloride, a small inorganic anion, has been found to form stable anionic adducts with a variety of neutral oligosaccharides that can survive the MALDI process to give readily identifiable signals (with characteristic isotope patterns) allowing subpicomole detection in the best cases. The matrixes that can aid the formation of chloride adducts of oligosaccharides have gas-phase acidities lower than or close to that of HCl (1373 kJ/mol). In PSD experiments, precursor chloride adducts of oligosaccharides yield fragment ions that retain the charge on the sugar molecule rather than solely forming Cl-, and these fragments can provide structurally informative product ions. In negative ion MALDI, highly acidic oligosaccharides do not form adducts with chloride anions, but mildly acidic saccharides (e.g., containing a carboxylic acid group) form both deprotonated molecules and chloride adducts, and each may provide structural information concerning the oligosaccharide upon decomposition. 相似文献
18.
Dynamic electrowetting on nanostructured silicon surfaces is demonstrated as an effective method for improving detection sensitivity in matrix-free laser desorption/ionization mass spectrometry. Without electrowetting, silicon surfaces comprising dense fields of oriented nanofilaments are shown to provide efficient ion generation and high spectral peak intensities for deposited peptides bound to the nanofilaments through hydrophobic interactions. By applying an electrical bias to the silicon substrate, the surface energy of the oxidized nanofilaments can be dynamically controlled by electrowetting, thereby allowing aqueous buffer to penetrate deep into the nanofilament matrix. The use of electrowetting is shown to result in enhanced interactions between deposited peptides and the nanofilament silicon surface, with improved signal-to-noise ratio for detected spectral peaks. An essential feature contributing to the observed performance enhancement is the open-cell nature of the nanofilament surfaces, which prevents air from becoming trapped within the pores and limiting solvent penetration during electrowetting. The combination of nanofilament silicon and dynamic electrowetting is shown to provide routine detection limits on the order of several attomoles for a panel of model peptides. 相似文献
19.
Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry 总被引:8,自引:0,他引:8
Analysis of low molecular weight compounds with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) has been developed by using carbon nanotubes obtained from coal by arc discharge as the matrix. The carbon nanotube matrix functions as substrate to trap analytes of peptides, organic compounds, and beta-cyclodextrin deposited on its surface. It has been found that carbon nanotubes can transfer energy to the analyte under laser irradiation, which makes analytes well desorbed/ionized, and the interference of intrinsic matrix ions can be eliminated. At the same time, the fragmentation of the analyte can be avoided. A good sensitivity and excellent reproducibility of the spectrum signals are achieved. It is believed that this work not only will open a new field for applications of carbon nanotubes, but also will offer a new technique for high-speed analysis of low molecular weight compounds in areas such as metabolism research and characterization of natural products. 相似文献
20.
The mass dependency of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) response has been studied using equimolar mixtures of synthetic discrete mass poly(butylene glutarate) (PBG) oligomers of known structure having degrees of polymerization of 8, 16, 32, and 64. Mass discrimination observed was attributed to choice of matrix and detector saturation caused by higher laser intensity and inclusion of matrix ions in the MALDI spectra. Optimization of sample preparation and instrumental parameters provided uniform response over the mass ranged spanned by these four oligomers. The oligomer mixture was shown to serve as a model of more complex polymer distributions in the mass range 780-6000 Da, and application of the discrete mass oligomers as internal and calibration standards was demonstrated. Inclusion of PBG discrete mass oligomers as an internal standard in a quasi-equimolar mixture with polydispersed poly(butylene adipate) (PBA) indicated that some diminution of response occurred during the analysis of this mixture of materials. Reasons for differences in the corrected molecular weight averages of the polydispersed PBA obtained from measurements using MALDI and GPC were studied using individual discrete mass oligomers as calibration standards for GPC. The data indicated that differences in hydrodynamic volumes of PBG oligomers and PEG standards at similar masses resulted in an overestimation by GPC of the molecular weight averages of the PBA distribution. 相似文献