首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The demyelinating process in Theiler's murine encephalomyelitis virus (TMEV) infection in mice requires virus persistence in the central nervous system. Using recombinant TMEV assembled between the virulent GDVII and less virulent BeAn virus cDNAs, we now provide additional evidence supporting the localization of a persistence determinant to the leader P1 (capsid) sequences. Further, recombinant viruses in which BeAn sequences progressively replaced those of GDVII within the capsid starting at the leader NH2 terminus suggest that a conformational determinant requiring homologous sequences in both the VP2 puff and VP1 loop regions, which are in close contact on the virion surface, might underlie persistence.  相似文献   

2.
Most strains of Theiler's virus (TMEV) cause a persistent infection of the central nervous system of the mouse and a chronic demyelinating disease considered a model for multiple sclerosis. Two strains, on the contrary, cause an acute encephalitis and kill mice in a matter of days. We sequenced the leader and capsid coding region of three persistent (TO4, WW, and Yale) isolates and one neurovirulent (FA) isolate of TMEV. We compared these sequences and those already published for other isolates (DA, BeAn, GDVII, and Vilyuisk). The results suggest that virulent and persistent strains did not evolve as two separate groups, but rather that neurovirulent strains arose from a subgroup of persistent strains. The sequences of viruses isolated in different geographic areas and at different times were highly homologous, a surprising finding for an RNA virus. This suggests that severe constraints are imposed on the genome during the viral life cycle. The sequences of the TO4 and WW strains were identical, suggesting that the latter came from a laboratory contamination. The genomes of all the persistent strains sequenced so far contain an alternate open reading frame in the L region, which has been shown, in the case of the DA strain, to code for an 18-kDa protein called "I".  相似文献   

3.
Theiler's murine encephalomyelitis virus is a neurotropic murine picornavirus which replicates permissively and causes a cytopathic effect in the BHK-21 cell line. We examined the interactions between the GDVII and DA strains of Theiler's virus and BHK-21 host cell proteins in a virus overlay assay. We observed binding of the virions to two proteins of approximately 60 kDa. These proteins were microsequenced and identified as desmin and vimentin, two main components of the intermediate filament network. The association between desmin or vimentin and virions was demonstrated by immunoprecipitation. Anti-desmin and anti-vimentin monoclonal antibodies precipitated GDVII or DA virions from extracts of infected BHK-21 cells. The intracellular distributions of virions and of the desmin and vimentin intermediate filaments of BHK-21 cells were investigated by two-color immunofluorescence confocal microscopy. Following infection, the intermediate filament network was rearranged into a shell-like structure which surrounded a viral inclusion. Finally, close contact between GDVII virus particles and 10-nm intermediate filaments was observed by electron microscopy.  相似文献   

4.
The GDVII strain of Theiler's virus is virulent. The DA strain is avirulent and can persist and initiate lesions of inflammatory demyelination in the CNS of susceptible strains of mice. Other, resistant strains of mice clear the infection. Replication of the GDVII and DA strains of Theiler's virus and their genetic recombinants R2, R3 and R4 were compared in mixed glial cell cultures derived from the mouse CNS. Differences were observed in the early rate of viral production. These mapped to the P1 capsid region of the viral genome. Viruses with GDVII P1 sequences produced virus and spread more rapidly than viruses with DA P1 sequences. GDVII virus infected greater numbers of cells than DA virus. Both strains of virus rapidly replicated at least to the level of translation in astrocytes (GFAP+), macrophage/microglial cells (F4/80+), oligodendrocytes (O4+) and bipotential precursor (A2B5+) cells. Early in infection many A2B5+ and GFAP+ cells were infected and destroyed. In contrast, O4+ cells were relatively resistant to cell-death. The cultures survived and produced virus over 14 days of study, at which time all 4 cell-type were present in the culture but < 1% of all the cells, the majority of which were O4+, expressed viral protein. Most of these infected O4+ cells retained a healthy morphology with extensive sheets of cytoplasm, suggesting that Theiler's virus infection of mature oligodendrocytes was non-destructive.  相似文献   

5.
The DA strain of Theiler's virus causes a persistent and demyelinating infection of the white matter of spinal cord, whereas the GDVII strain causes a fatal gray-matter encephalomyelitis. Studies with recombinant viruses showed that this difference in phenotype is controlled mainly by the capsid. However, conflicting results regarding the existence of determinants of persistence in the capsid of the GDVII strain have been published. Here we show that a GDVII virus whose neurovirulence has been attenuated by an insertion in the 5' noncoding region does not persist in the central nervous systems of mice. Furthermore, this virus infects the gray matter efficiently, but not the white matter. These results confirm the absence of determinants of persistence in the GDVII capsid. They suggest that the DA capsid controls persistence by allowing the virus to infect cells in the white matter of the spinal cord.  相似文献   

6.
With persistent foot-and-mouth disease virus (FMDV) in BHK-21 cells, there is coevolution of the cells and the resident virus; the virulence of the virus for the parental BHK-21 cells is gradually increased, and the cells become partially resistant to FMDV. Here we report that variants of FMDV C3Arg/85 were selected in a single infection of partially resistant BHK-21 cells (termed BHK-Rb cells). Indirect immunofluorescence showed that the BHK-Rb cell population was heterogeneous with regard to susceptibility to C3Arg/85 infection. Infection of BHK-Rb cells with C3Arg/85 resulted in an early phase of partial cytopathology which was followed at 6 to 10 days postinfection by the shedding of mutant FMDVs, termed C3-Rb. The selected C3-Rb variants showed increased virulence for BHK-21 cells, were able to overcome the resistance of modified BHK-21 cells to infection, and had acquired the ability to bind heparin and to infect wild-type Chinese hamster ovary (CHO) cells. A comparison of the genomic sequences of the parental and modified viruses revealed only two amino acid differences, located at the surface of the particle, at the fivefold axis of the viral capsid (Asp-9-->Ala in VP3 and either Gly-110-->Arg or His-108-->Arg in VP1). The same phenotypic and genotypic modifications occurred in a highly reproducible manner; they were seen in a number of independent infections of BHK-Rb cells with viral preparation C3Arg/85 or with clones derived from it. Neither amino acid substitutions in other structural or nonstructural proteins nor nucleotide substitutions in regulatory regions were found. These results prove that infection of partially permissive cells can promote the rapid selection of virus variants that show alterations in cell tropism and are highly virulent for the same cells.  相似文献   

7.
Following intracerebral infection with Theiler's murine encephalomyelitis virus (TMEV), susceptible strains of mice (SJL and PLJ) develop virus persistence and demyelination similar to that found in human multiple sclerosis. Resistant strains of mice (C57BL/6) clear virus and do not develop demyelination. To resolve the controversy about the role of CD4(+) and CD8(+) T cells in the development of demyelination and neurologic deficits in diseases of the central nervous system, we analyzed TMEV infection in CD4- and CD8-deficient B6, PLJ, and SJL mice. Genetic deletion of either CD4 or CD8 from resistant B6 mice resulted in viral persistence and demyelination during the chronic stage of disease. Viral persistence and demyelination were detected in all strains of susceptible background. Although genetic deletion of CD8 had no effect on the extent of demyelination in susceptible strains, deletion of CD4 dramatically increased the degree of demyelination observed. Whereas strains with deletions of CD4 showed severe neurologic deficits, mice with deletions of CD8 showed minimal or no deficits despite demyelination. In all strains, deletion of CD4 but not CD8 resulted in a decreased delayed-type hypersensitivity response to viral antigen. We conclude that each T-cell subset makes a discrete and nonredundant contribution to protection from viral persistence and demyelination in resistant strains. In contrast, in susceptible strains, CD8(+) T cells do not provide protection against chronic demyelinating disease. Furthermore, in persistent TMEV infection of the central nervous system, neurologic deficits appear to result either from the absence of a protective class II-restricted immune response or from the presence of a pathogenic class I-restricted response.  相似文献   

8.
Alphaviruses are important causes of mosquito-borne viral encephalitis. The prototype alphavirus, Sindbis virus, causes encephalomyelitis in mice. The primary target cell for nervous system infection is the neuron. Thus, Sindbis virus infection of mice provides a model system for studying virus-neuron interactions. The outcome of infection is dependent on the maturity of the targeted neurons and on the strain of Sindbis virus used for infection. Most Sindbis virus strains can induce programmed cell death or apoptosis in cultured lines of mammalian cells and in immature postmitotic neurons both in vitro and in vivo. As neurons mature they become increasingly resistant to Sindbis virus-induced apoptosis presumably due to increased expression with differentiation of cellular antiapoptotic proteins. Therefore, in the absence of an effective immune response, these relatively avirulent strains of Sindbis virus establish persistent nonfatal infection in mature neurons. More virulent strains of Sindbis virus can overcome this intrinsic resistance of mature neurons to apoptosis and cause neuronal death. Amino acid changes in the virion glycoproteins are the main determinants of neurovirulence and knowledge of the effects of specific changes allows the investigator to design Sindbis viruses of specified neurovirulence for animals of different ages.  相似文献   

9.
The strains of Theiler's murine encephalomyelitis virus, a picornavirus, are divided into two groups according to their neurovirulence after intracerebral inoculation. The highly virulent GDVII strain causes an acute, fatal encephalomyelitis, whereas the DA strain causes a mild encephalomyelitis followed by a chronic inflammatory demyelinating disease associated with viral persistence. Studies with recombinant viruses showed that the capsid plays the major role in determining these phenotypes. However, the molecular basis for the effect of the capsid on neurovirulence is still unknown. In this paper, we describe a large difference in the patterns of infection of primary neuron cultures by the GDVII and DA strains. Close to 90% of the neurons were infected 12 h after inoculation with the GDVII strain, and the cytopathic effect was complete 24 h postinoculation. In contrast, with the DA strain, viral antigens were not detected in neurons until 24 h postinoculation. Infected neurons accounted for only 2% of the total number of neurons, even 6 days after inoculation. No cytopathic effect was visible, and the cultures could be kept for the same length of time as the noninfected controls. Because the neurovirulence of the GDVII strain has been mapped to the capsid, we examined the role of the capsid in this difference of phenotype. We showed, using recombinant viruses, that the capsid was indeed responsible for the pattern of infection observed in vitro, most likely through its role in viral entry. Thus, the levels of neurovirulence of the GDVII and DA strains correlate with their abilities to infect cultured neurons, and this ability is controlled by the capsid.  相似文献   

10.
Cells of the central nervous system (CNS) normally do not express detectable levels of major histocompatibility complex (MHC) Class I antigens. However, MHC Class I expression can be induced after virus infection. We tested the hypothesis that virus-induced Class I expression is mediated by lymphocytes or cytokines using lymphocyte- and cytokine-deficient mice. We used Theiler's murine encephalomyelitis virus (TMEV), which induces CNS demyelination that maps genetically to the D region of MHC Class I and is associated with high levels of Class I products. TMEV infection of severe combined immunodeficiency (SCID) and recombination activation gene-1-deficient mice, which lack B and T lymphocytes, resulted in equivalent H-2D and H-2K expression in brain and spinal cord, according to analysis of the area and intensity of immunoperoxidase staining. Class I antigens were demonstrated as early as 6 hours after infection, and they were more widely distributed than viral RNA, indicating that expression was induced indirectly via a soluble factor. To determine whether cytokines induced the expression, we infected mice lacking receptors for interferon-alpha/beta (IFN-alpha/beta R (-/-)), interferon-gamma (IFN-gamma R(-/-)), and tumor necrosis factor-alpha (TNFRp55(-/-)). TMEV-infected IFN-gamma R(-/-) and TN-FRp55(-/-) mice expressed Class I antigens in the CNS, whereas IFN-alpha/beta R(-/-) mice did not, establishing that IFN-alpha/beta mediated the expression. In contrast to the equivalent expression in SCID mice, we observed greater area and higher intensity of H-2D versus H-2K antigens in infected SCID mice reconstituted with normal spleen cells. Collectively, the data indicate that after TMEV infection, early generalized MHC Class I expression is mediated by IFN-alpha/beta independently of lymphocytes, but the differential regulation of H-2D over H-2K may be controlled by B and/or T lymphocytes.  相似文献   

11.
The microviscosities of the hydrophobic regions of the membranes of intact Semliki forest and Sindbis viruses grown on BHK-21 cells, of liposomes derived from the extracted viral lipids, and of protease-treated virions were measured by fluorescence depolorization using the fluorescence probe 1, 6-diphenyl-1,3,5-hexatriene. The intact virus membranes were found to have a higher microviscosity than did virus-derived liposomes, indicating the viral envelope proteins contribute to microviscosity. However, protease-treated virus, devoid of protruding spikes but with residual lipophilic peptide tails, was found to have a microviscosity more similar to that of the intact virus than to that of protein-free liposomes. Sindbis virus grown in BHK-21 cells at 37 C had a much higher microviscosity than did Sindbis virus grown on Aedes albopicuts cells at 22 C. Sindbis virus grwon in A. albopictus and BHK-21 cells also gave higher microviscosity values than did the intact host cells. These data indicate that both the virion proteins and the cellular lipids selected during viral growth and maturation contribute to the increased microviscosity of togavirus membranes.  相似文献   

12.
Whereas defective interfering particles of Sindbis virus are readily produced in BHK-21 cells or chicken embryo fibroblasts by the techniques of serial undiluted passage, similar methods failed to generate such particles in Aedes albopictus cell cultures. In addition, Sindbis virus stocks produced in BHK-21 cells or chicken embryo fibroblasts and which contained defective interfering particles, when tested in A. albopictus cells, failed (i) to interfere with the replication of standard Sindbis virus and (ii) to change the pattern of intracellular viral RNA synthesis from that produced by infection with standard Sindbis virus alone. We conclude that defective interfering particles of Sindbis virus generated in chicken or hamster cells are silent or inert in mosquito cells.  相似文献   

13.
The etiology of hydrocephalus is never established in the majority of clinical cases, while various agents, nutritional deficiencies, and genetic factors have been shown to play a role. Viral infection has been recognized as one of the causative factors in the development of hydrocephalus. The wild-type DA strain of Theiler's murine encephalomyelitis virus (TMEV), which belongs to the family Picornaviridae, causes a chronic demyelinating disease in mice with viral persistence that resembles multiple sclerosis. We found that a DA virus variant, hydrocephalus 101 virus (H101 virus), caused hydrocephalus in mice, a condition previously never described for TMEV. To clarify the relationship between DA virus infection and hydrocephalus, we compared H101 virus and wild-type DA virus infection in mice. Using immunohistochemistry and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL), we found that during the acute phase of infection, H101 virus caused macrocephaly and meningitis with the presence of apoptosis, while parenchymal involvement was not evident. In contrast, wild-type DA virus caused an acute polioencephalomyelitis with parenchymal infection and apoptosis. During the chronic phase, H101 virus infection caused communicating hydrocephalus without viral persistence. No demyelination and little or no anti-TMEV antibodies were observed in H101 virus-infected mice. Sequence analysis revealed that H101 virus had mutations in the 5'UTR and capsid protein coding region. Characterization of this new hydrocephalus model gives insight into the possible viral involvement in human hydrocephalus cases of obscure etiology.  相似文献   

14.
Theiler's virus, a murine picornavirus, infects the central nervous systems of C57BL/6 mice and is cleared after approximately 10 days by a process which requires CD8+ cytotoxic T cells. We used perforin-deficient C57BL/6 mice to test the role of this protein in viral clearance. Perforin-deficient mice died from viral encephalomyelitis between days 12 and 18 postinoculation. They had high levels of viral RNA in their central nervous systems until the time of death. In contrast, viral RNA had disappeared by day 11 postinoculation in wild-type C57BL/6 mice. Cytotoxic T cells can kill infected cells by two main mechanisms: the secretion of the pore-forming protein perforin or the interaction of the Fas ligand with the apoptosis-inducing Fas molecule on the target cell. Our results demonstrate that clearance of Theiler's virus from the central nervous system in C57BL/6 mice is perforin dependent.  相似文献   

15.
Theiler's murine encephalomyelitis viruses, which are murine picornaviruses, can cause central nervous system inflammatory disease. To study the role of loop II in capsid protein VP1, two mutant viruses of strain DA in which DA loop II amino acids were replaced with strain GDVII amino acids were constructed. Infection of mice with the two mutant viruses led to dramatically different patterns of disease.  相似文献   

16.
Recombinant Sendai viruses were prepared which cannot express their Cprime, C, or Cprime plus C proteins due to mutation of their respective start codons ([Cprime-minus], [C-minus] and [double mutant], respectively). The [Cprime-minus] and [C-minus] stocks were similar to that of wild-type (wt) virus in virus titer and plaque formation, whereas the double-mutant stock had a much-reduced PFU or 50% egg infective dose/particle ratio and produced very small plaques. Relative to the wt virus infection, the [Cprime-minus] and [C-minus] infections of BHK cells resulted in significantly greater accumulation of viral RNAs, consistent with the known inhibitory effects of the Cprime and C proteins. The double-mutant infection, in contrast, was delayed in its accumulation of viral RNAs; however, once accumulation started, overaccumulation quickly occurred, as in the single-mutant infections. Our results suggest that the Cprime and C proteins both provide a common positive function early in infection, so that only the double mutant undergoes delayed RNA accumulation and exhibits the highly debilitated phenotype. Later in infection, the same proteins appear to act as inhibitors of RNA accumulation. In infections of mice, [Cprime-minus] was found to be as virulent as wt virus whereas [C-minus] was highly attenuated. These results suggest that the Cprime and C proteins cannot be functionally equivalent, since C can replace Cprime for virulence in mice whereas Cprime cannot replace C.  相似文献   

17.
We examined the phenotype and function of cells infiltrating the central nervous system (CNS) of mice persistently infected with Theiler's murine encephalomyelitis virus (TMEV) for evidence that viral antigens are presented to T cells within the CNS. Expression of major histocompatibility complex (MHC) class II in the spinal cords of mice infected with TMEV was found predominantly on macrophages in demyelinating lesions. The distribution of I-As staining overlapped that of the macrophage marker sialoadhesin in frozen sections and coincided with that of another macrophage/microglial cell marker, F4/80, by flow cytometry. In contrast, astrocytes, identified by staining with glial fibrillary acidic protein, rarely expressed detectable MHC class II, although fibrillary gliosis associated with the CNS damage was clearly seen. The costimulatory molecules B7-1 and B7-2 were expressed on the surface of most MHC class II-positive cells in the CNS, at levels exceeding those found in the spleens of the infected mice. Immunohistochemistry revealed that B7-1 and B7-2 colocalized on large F4/80(+) macrophages/microglia in the spinal cord lesions. In contrast, CD4(+) T cells in the lesions expressed mainly B7-2, which was found primarily on blastoid CD4(+) T cells located toward the periphery of the lesions. Most interestingly, plastic-adherent cells freshly isolated from the spinal cords of TMEV-infected mice were able to process and present TMEV and horse myoglobin to antigen-specific T-cell lines. Furthermore, these cells were able to activate a TMEV epitope-specific T-cell line in the absence of added antigen, providing conclusive evidence for the endogenous processing and presentation of virus epitopes within the CNS of persistently infected SJL/J mice.  相似文献   

18.
Pseudorabies virus (PRV) is a neurotropic swine alpha herpesvirus that characteristically invades the nervous system and replicates within synaptically-linked populations of neurons. The invasive characteristics and ability of this family of viruses to replicate in neurons of the central nervous system (CNS) have been exploited to map functionally related populations of neurons in a variety of systems. In this report, we examined the effects of strain and concentration on the ability of PRV to infect retinal ganglion cells and pass transneuronally through central visual circuits. We find that the ability of virulent (PRV-Becker) and attenuated (PRV-Bartha) strains of PRV to produce a productive infection of visual circuitry is directly dependent upon the infectious of the injected virus. Injections of at least 10(5) total plaque forming units produce 100% infectivity, whereas lower infectious doses substantially reduce the percentage of animals exhibiting productive infection via this route of inoculation. Furthermore, the virulent strain of PRV consistently infects a higher percentage of animals across a broader range of titers than attenuated virus. These data demonstrate that viral titer and strain are important variables that should be considered in the design of studies and interpretation of data derived from investigations employing this pathogen for circuit analysis.  相似文献   

19.
Most individuals infected with human immunodeficiency virus type 1 (HIV-1) initially harbor macrophage-tropic, non-syncytium-inducing (M-tropic, NSI) viruses that may evolve into T-cell-tropic, syncytium-inducing viruses (T-tropic, SI) after several years. The reasons for the more efficient transmission of M-tropic, NSI viruses and the slow evolution ofT-tropic, SI viruses remain unclear, although they may be linked to expression of appropriate chemokine coreceptors for virus entry. We have examined plasma viral RNA levels and the extent of CD4+ T-cell depletion in SCID mice reconstituted with human peripheral blood leukocytes following infection with M-tropic, dual-tropic, or T-tropic HIV-1 isolates. The cell tropism was found to determine the course of viremia, with M-tropic viruses producing sustained high viral RNA levels and sparing some CD4+ T cells, dual-tropic viruses producing a transient and lower viral RNA spike and extremely rapid depletion of CD4+ T cells, and T-tropic viruses causing similarly lower viral RNA levels and rapid-intermediate rates of CD4+ T-cell depletion. A single amino acid change in the V3 region of gp120 was sufficient to cause one isolate to switch from M-tropic to dual-tropic and acquire the ability to rapidly deplete all CD4+ T cells.  相似文献   

20.
Transforming growth factor beta (TGF-beta) is a family of proteins secreted by virtually all cells in a biologically inactive form. TGF-beta levels increase during many pathophysiological situations, including viral infection. The mechanism for increased TGF-beta activity during viral infection is not understood. We observed an increase in active TGF-beta levels within 1 day in mice infected with influenza virus. Further studies showed that the neuraminidase glycoprotein of influenza A and B viruses directly activates latent TGF-beta in vitro. There are sufficient levels of TGF-beta activated by virus to induce apoptosis in cells. In addition, influenza virus-induced apoptosis is partially inhibited by TGF-beta-specific antibodies. These novel findings suggest a potential role for activation of TGF-beta during the host response to influenza virus infection, specifically apoptosis. This is the first report showing direct activation of latent TGF-beta by a viral protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号